Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen (Radiation Application Research Division) ;
  • Ryu Hwa-Won (Faculty of Applied Chemical Engineering, Chonnam National University, Institute of Bioindustrial Technology, Chonnam National University)
  • Published : 2005.02.01

Abstract

A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

Keywords

References

  1. de Bartolo, L., S. G. Jarosch-Von, A. Haverich, and A. Bader (2000) A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: Cell viability and tissuespecific functions. Biotechnol. Prog. 16: 102-108 https://doi.org/10.1021/bp990128o
  2. Tilles, A. W., H. Baskaran, P. Roy, M. L. Yarmush, and M. Toner (2001) Effect of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol. Bioeng. 73: 379- 389 https://doi.org/10.1002/bit.1071
  3. Gion, T., M. Shimada, K. Shirabe, K. Nakazawa, H. Ijima, T. Matsushita, and K. Funatsu (1999) Evaluation of a hybrid artificial liver using a polyurethane foam packed-bed culture system in dogs. J. Surg. Res. 82: 131-136 https://doi.org/10.1006/jsre.1998.5540
  4. Sakai, Y., K. Naruse, I. Nagashima, T. Muto, and M. Suzuki (1999) A new bioartificial liver using porcine hepatocytes spheroids in high-cell-density suspension perfusion culture: In vivo performance in synthesized culture medium and in 100% human plasma. Cell Transplant. 8: 531- 541 https://doi.org/10.1177/096368979900800508
  5. Demetriou, A. A., J. Rozga, L. Podesta, E. Lepage, E. Morsiani, A. D. Moscioni, A. Hoffman, M. McGrath, L. Kong, H. Rosen, F. Villamil, G. Woolf, J. Vierling, and L. Makowka (1995) Early clinical experience with a hybrid bioartificial liver. Scand. J. Gastroenterol. 30: 111-117 https://doi.org/10.3109/00365529509107771
  6. Sussman, N. L., G. T. Gislason, C. A. Conlin, and J. H. Kelly (1994) The hepatix extracorporeal liver assist device: Initial clinical experience. Artif. Organs. 18: 390-396 https://doi.org/10.1111/j.1525-1594.1994.tb02221.x
  7. Hughes, R. D. and R. Williams (1996) Use of bioartificial and artificial liver support devices. Sem. Liver Dis. 16: 435-444 https://doi.org/10.1055/s-2007-1007256
  8. Asonuma, K., J. C. Gibert, J. E. Stein, T. Takeda, and J. P. Vacanti (1992) Quantitation of transplanted hepatic mass necessary to cure the gunn rate model of hyperbilirubinemia. J. Pediat. Surg. 27: 298-301 https://doi.org/10.1016/0022-3468(92)90850-7
  9. Yarmush, M. L., J. C. Dunn, and R. G. Tompkins (1992) Assessment of artificial liver support technology. Cell Transplant. 1: 323-341 https://doi.org/10.1177/096368979200100501
  10. Rowland, M. and T. N. Tozer (1989) Clinical Pharmacokinetics: Concepts an Applications. Lea & Febiger, Philadelphia, USA
  11. Park, Y. G., Y. S. Son, and H.-W. Ryu (2003) Perfusion model for detoxification of drugs in a bioartificial liver. Int. J. Artif. Organs 26: 224-231
  12. Park, Y. G., H. Iwata, S. Satoh, T. Uesugi, and H.–W. Ryu (2003) Method for evaluating metabolic functions of drugs in bioartificial liver. Biotechnol. Bioprocess Eng. 8: 41-46 https://doi.org/10.1007/BF02932897
  13. Nyberg, S. L., W. D. Payne, B. Amiot, K. Shirabe, R. P. Remmel, W. S. Hu, and F. B. Cerra (1993) Demonstration of biochemical function by extracorporeal xenohepatocytes in an anhepatic animal model. Transplant. Proc. 25: 1944-1945
  14. Kamlot, A., J. Rozga, F. D. Watanabe, and A. A. Demetriou (1996) Review: Artificial liver support system. Biotechnol. Bioeng. 50: 382-391 https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4<382::AID-BIT5>3.0.CO;2-H
  15. Rozga, J., E. Morsiani, H. Fujioka, and A. A. Demetriou (1993) Anhepatic pig-evaluation of a model. J. Hepatol. 18: S72-S79 https://doi.org/10.1016/S0168-8278(05)80383-6
  16. Patankar, D. and T. Oolman (1991) Wall-growth hollow fiber reactor for tissue culture: I. Preliminary experiments. Biotechnol. Bioeng. 37: 80-92 https://doi.org/10.1002/bit.260370112
  17. Lanza, R. P., D. H. Butler, K. M. Borland, J. E. Staruk, D. L. Faustman, B. A. Solomen, T. E. Muller, R. G. Rupp, T. Maki, A. P. Monaco, and W. L. Chick (1991) Xeno transplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc. Natl. Acad. Sci. USA 88: 11100-11104 https://doi.org/10.1073/pnas.88.24.11100
  18. Sardonini, C. A. and D. DiBiasio (1992) An investigation of the diffusion-limited growth of animal cells around single hollow fibers. Biotechnol. Bioeng. 40: 1233-1242 https://doi.org/10.1002/bit.260401013