Effects of Temperature, Salinity and Diet on the Productivity of the Cyclopoid Copepod, Apocyclops royi

수온, 염분 및 먹이에 따른 기수산 cyclopoid 요각류, Apocyclops royi의 생산력

  • Lee Kyun-Woo (Korea Ocean Research und Development Institute) ;
  • Kwon O-Nam (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • Park Heum-Gi (Faculty of Marine Bioscience & Technology, Kangnung National University)
  • 이균우 (한국해양연구원 해양생물자원연구본부) ;
  • 권오남 (강릉대학교 해양생명공학부) ;
  • 박흠기 (강릉대학교 해양생명공학부)
  • Published : 2005.02.01

Abstract

The productivity of cyclopoid copepod, Apocyclops royi fed by various diets (Isochrysis galbana, Tetraselmis suecica, Phaeodactylum tricornutum, concentrated freshwater Chlorella and baker's yeast) was investigated at tile different temperatures ($16-36^{\circ}C$) with different salinities (5-34 ppt). A. royi was cultured in 6 ml vessels (12 wells culture plate). Total production (188 inds.) and daily production (13.4 inds.) of nauplii by A. royi female at $32^{\circ}C$ were significantly higher than those of nauplii at the different temperatures (P<0.05). Development time from nauplii to copepodite and from nauplii to adult tended to increase with increasing water temperature up to 32. And total production (169 inds.) and daily production (9 inds.) of nauplii by A. royi female at 10 ppt were significantly higher than those of nauplii at the different salinities (P<0.05). The fastest development time from nauplii to copepodite and from nauplii to adult was observed at 10 ppt and 15 ppt, respectively (P<0.05). The highest total production of A. royi nauplii and fastest development time from nauplii to adult were obtained in females fed Isochrysis galbana (P<0.05). These results may indicate that the optimum culture temperature and salinity for A. royi are $32^{\circ}C$ and 10 ppt, respectively, and Isochrysis galbana is one of the suitable diets for this copepod.

본 연구는 Apocyclops royi를 양식에서 초기 먹이생물로 적용시키기 위해 이들의 대량배양을 위한 수온과 염분의 최적범위 및 최적 성장을 위한 먹이를 구명하고자 실시되었다. A. royi 성체 암컷의 총 nauplius 생산력은 수온 $32^{\circ}C$에서 188 개체로 가장 높게 나타났고 성체 암컷 당 일간 nauplius 생산수도 총 생산수와 같은 경향을 보여 $32^{\circ}C$에서 13.4개체로 가장 높게 나타났다. Nauplius 부화 후 최초 포란할 때까지 발달 기간은 $32^{\circ}C$가 7.2일로 가장 빠른 발달을 보였으며 수온이 감소할수록 발달기간이 느린 경향을 보였다. A. royi 성체 암컷의 총 nauplius 생산력은 염분 10 ppt에서 169 개체로 가장 높게 나타났고 성체 암컷 당 일일 평균 nauplius 생산수는 10 ppt가 9 개체로 가장 높게 나타났다. Nauplius 부화 후 최초 포란할 때까지 발달 기간은 10 ppt와 15 ppt이 각각 7.1일, 7.7일로 빠른 발달을 보였으며 염분이 높을수록 발달기간이 길어지는 경향을 보였다. A. royi 성체 암컷의 총 nauplius 생산력은 I. galbana와 T. suecica 공급구에서 각각 142, 127 개체로 가장 높게 나타났고, 성체 암컷 당 일일 평균 nauplius 생산수는 I. galbana 공급구가 8.2개체로 가장 높게 나타났다. Nauplius 단계에서 copepodid 단계까지의 발달 기간은 I. galbana, T. suecica, P. tricornutum 공급구가 각각 3.4, 3.6, 3.7일로 담수산 농축 Chlorella와 빵 효모 공급구보다 빠른 발달을 보였다. 결론적으로, cyclopoid 요각류인 A. royi는 대량배양의 잠재성이 있으며 최적 대량배양을 위해서는 수온 $32^{\circ}C$, 염분 10 ppt에서 먹이로 I. galbana를 공급하여야 할 것으로 판단된다.

Keywords

References

  1. Carotenuto, Y, A. Ianora, I. Buttino, G. Romano and A. Miralto, 2002. Is postembryonic development in the copepod Temora stylifera negatively affected by diatom diets? J. Exp. Mar. BioI. Ecol., 276, 49-66 https://doi.org/10.1016/S0022-0981(02)00237-X
  2. Cervetto, G., R. Gaudy and M. Pagano, 1999. Influence of salinity on the distrbution of Acartia tonsa (Copepoda, Calanoida). J. Exp. Mar. BioI. Ecol., 239, 33-45 https://doi.org/10.1016/S0022-0981(99)00023-4
  3. Chang, W. B. and C. H. Lei, 1993. Development and energy content of a brackish-water copepod, Apocyclops royi (Linberg) reared in a laboratory. Bull. Inst. Zool. Acad. Sinica, 32, 62-81
  4. Checkley, D. M., 1980. The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol. Oceanogr., 25, 430-446 https://doi.org/10.4319/lo.1980.25.3.0430
  5. Cheng, S. H., H. C. Chen, S. L. Chang, T. I. Chen and I. C. Liao, 2001. Study on the optimal density of mass culture in copepod Apocyclops royi. The 6th Asian Fisheries Forum Book of Abstracts, 58 pp
  6. Corkett, C. J. and I. A. McLaren, 1970. Relationships between development rate of eggs and older stages of copepods. J. Mar.BioI. Ass. U. K., 50, 161-168 https://doi.org/10.1017/S0025315400000680
  7. Desvilettes, C., G. Bourdier and J. Breton, 1997. On the occurrence of a possible bioconversion of linolenic acid into docosahexaenoic acid by the copepod Eucyclops serrulatus fed on microalgae.J. Plankton Res., 19,273-278 https://doi.org/10.1093/plankt/19.2.273
  8. Duncan, D. B., 1955. Mutilple range and multiple F tests. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  9. Gapasin, R. S. J. and M. N. Duray, 2001. Effects of DHA-enriched live food on growth, survival and incidence of opercular deformities in milkfish (Chanos chanos). Aquaculture, 193,49-63 https://doi.org/10.1016/S0044-8486(00)00469-5
  10. Guilard, R. L. and J. H. Ryther, 1962. Studies for marine planktonic diatoms Cyclotella nana Hustedt and Detomnule conferracea (Cleve). Gram. Can. J. Microbiol., 8, 229-239 https://doi.org/10.1139/m62-029
  11. Halsband-Lenk, c., H. Hirche and F. Carlotti, 2002. Temperature impact on reproduction and development of congener copepod populations. J. Exp. Mar. BioI. Ecol., 271, 121-153 https://doi.org/10.1016/S0022-0981(02)00025-4
  12. Jung, M.-M., H.-S. Kim, S. Rho, I. F. M. Rumengan and A. Hagiwara, 1999. The culture of free-swimming, copepod species Apocyclops sp. (Copepod: Cydopoida) by baking yeast. J. Aquacult., 12,303-307
  13. Kahan, D., G. Uhlig, D. Schwenzer and L. Horowitz, 1982. A simple method for cultivating harpacticoid copepods and offering them to fish larvae. Aquaculture, 26, 303-310 https://doi.org/10.1016/0044-8486(82)90165-X
  14. Kang, H. K., 1997. Primary production and production of copepod Acartia steueri in Ilkwang Bay, Southeast Coast of Korea. PhD. thesis, Pukyong National University, 74-146 pp
  15. Kimoto, K., S. Uye and T. Onbe, 1986a. Growth characteristics of a brackish-water calanoid copepod Sinocalanus tenellus in relation to temperature and salinity. Bull. Plankton Soc. Japan, 33.43-57
  16. Kimoto, K.. S. Uye and T. Onbe, 1986b. Egg production of a brackish-water calanoid copepod Sinocalanus tenellus in relation to food abundance and temperature. Bull. Plankton Soc.Japan, 33, 133-145
  17. Kitajima, C., 1973. Experimental trial on mass culture of copepods. Bull. Plankton Soc. Japan, 20, 54-60
  18. Klein Breteler. W. C. M., N. Schogt and S. R. Gonzalez, 1990. On the role of food quality in grazing and development of life stages, and genetic change of body size during cultivation of pelagic copepods. J. Exp. Mar. BioI. Ecol., 135, 177-189 https://doi.org/10.1016/0022-0981(90)90117-U
  19. Klein Breteler, W. C. M., N. Schogt, M. Bass, S. Schouten and G. W. Kraay, 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar.BioI., 135, 191-198 https://doi.org/10.1007/s002270050616
  20. Laabir M., S. A. Poulet and A. Ianora, 1995. Measuring production and viability of eggs in Calanus helgolandicus. J. Plankton Res., 17,1125-1142 https://doi.org/10.1093/plankt/17.5.1125
  21. Laabir, M., I. Buttino, A. Ianora, G. Kattner, S. A., Poulet, G. Romano, Y. Carotenuto and A. Miralto, 2001. Effect of specific dinoflagellate and diatom diets on gamete ultrastructure and fatty acid profiles of the copepod Temora stylifera. Mar.BioI., 138. 1241-1250 https://doi.org/10.1007/s002270100547
  22. Lacoste, A., S. P. Poulet, A. Cueff, G. K. Kattner, A. Ianora and M. Laabir, 2001. New evidence of the copepod maternal food effect on reproduction. J. Exp. Mar. BioI. Ecol., 259, 85-107 https://doi.org/10.1016/S0022-0981(01)00224-6
  23. Landry, M. R., 1975. The relationship between temperature and the development of life stages of the marine copepod Acartia clausi Giesbr. Limnol. Oceanogr., 20, 854-858 https://doi.org/10.4319/lo.1975.20.5.0854
  24. Lee, S.-M., J. K. Kim, T. J. Kim, J. G. Kim and H. G. Park, 1999. Nutritive value of Kluyveromycesfragilis and Candida utilis as feed for aquaculture. J. Kor. Fish. Soc., 32, 791-797
  25. Lipman, E. E., K. R. Kao and R. P. Phelps, 2001. Production of the copepod Oithona sp. under hatchery conditions. Aquaculture 2001: Book of abstracts, 379 pp
  26. Maruyama, I., T. Nakao, I. Shigeno, Y. Ando and K. Hirayama, 1997. Application of unicellular algae Chlorella vulgaris for the mass culture of marine rotifer Brachionlls. Hydrobiologia, 358. 133-138 https://doi.org/10.1023/A:1003116003184
  27. Miliou, H. and M. Moraitou-Apostolopoulou, 1991. Combined effects of temperature and salinity on the population dynamics of Tisbe holothuriae Humes (Copepoda: Harpacticoida). Arch.Hydrobiol., 121,431-448
  28. Miralto, A., G. Barone, G. Romano, S. A. Poulet, A. Ianora, G. L. Russo, I. Buttino, G. Mazzarella, M. Laabir, M. Cabrini and M. G. Giacobbe, 1999. The insidious effect of diatoms on copepod reproduction. Nature, 402, 173-176 https://doi.org/10.1038/46023
  29. Nagaraj, M., 1988. Combined effects of temperature and salinity on the complete development of Eurytemora velox (Crustacea: Calanoidea). Mar. Biol., 99, 353-358 https://doi.org/10.1007/BF02112127
  30. Nagaraj, M., 1992. Combined effects of temperature and salinity on the development of the copepod Eurytemora affinus. Aquaculture, 103, 65-71 https://doi.org/10.1016/0044-8486(92)90279-T
  31. Nanton, D. A. and J. D. Castell, 1999. The effects of temperature and dietary fatty acid on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture, 175, 167-181 https://doi.org/10.1016/S0044-8486(99)00031-9
  32. Norsker, N. H. and J. G. Stttrup, 1994. The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid, Tisbe holothllriae Humes. Aquaculture, 125, 155-166 https://doi.org/10.1016/0044-8486(94)90292-5
  33. Ohno, A. and Y. Okamura, 1988. Propagation of the calanoid copepod, Acartia tsuensis, in outdoor Tanks. Aquaculture, 70, 39-51 https://doi.org/10.1016/0044-8486(88)90005-1
  34. Ohno, A., T. Takahashi and Y. Taki, 1990. Dynamics of exploited populations of the calanoid copepod, Acartia tSlIensis. Aquaculture, 84, 27-39 https://doi.org/10.1016/0044-8486(90)90297-Z
  35. Park, H. G., S. B. Hur and C. W. Kim, 1998. Culturing method and dietary value of benthic copepod, Tigriopus japonicus. J.Aquacult, 11, 261-269
  36. Payne, M. F. and R. J. Rippingale, 2000. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture, 187, 85-96 https://doi.org/10.1016/S0044-8486(99)00391-9
  37. Payne, M. F., and R. J. Rippingale, 2001. Intensive cultivation of the calanoid copepod Gladioferens imparipes. Aquaculture, 201,329-342 https://doi.org/10.1016/S0044-8486(01)00608-1
  38. Pinto, C. S. C., L. P. Souza-Santos and P. J. P. Santos, 2001. Development and population dynamics of Tisbe biminiensis (Copepoda: Harpacticoida) reared on different diets. Aquaculture, 198, 253-267 https://doi.org/10.1016/S0044-8486(00)00582-2
  39. Schipp, G. R., J. M. P. Bosmans and A. J. Marshall, 1999. A method for hatchery culture of tropical calanoid copepod, Acartia spp. Aquaculture, 174, 81-88 https://doi.org/10.1016/S0044-8486(98)00508-0
  40. Shansudin, L., M. Yusof, A. Azis and Y. ShukIi, 1997. The potential of certain indigenous copepod species as live food for commercial fish larval rearing. Aquaculture, 151, 3.51-356
  41. Stttrup,J. G., K. Richardson, E. Kirkegaard and N. J. Pihl, 1986. The cultivation of Acartia tonsa Dana for use as a live food source for marine fish larvae. Aquaculture, 52, 87-96 https://doi.org/10.1016/0044-8486(86)90028-1
  42. Stttrup J. G. and L. A. McEvoy, 2003. Live feeds in marine aquaculture. (in) J. G. Stttrup (ed.), Production and Nutritoinal Value of Copepods. Blackwell Science Ltd, pp. 145-205
  43. Stttrup, J, G. and N. H. Norsker, 1997. Production and use of copepods in marine tish larviculture. Aquaculture, 155, 231-247 https://doi.org/10.1016/S0044-8486(97)00120-8
  44. Su. H. M.. M. S. Su and I. C. Liao. 1997. Collection and culture of live foods for aquaculture in Taiwan. Hydrobiologia, 358, 37-40 https://doi.org/10.1023/A:1003107701367
  45. Sun, B. and J. W. Fleeger, 1995. Sustained mass culture of Amphiascoides atoplls a marine harpacticoid copepod in a recirculating system. Aquaculture, 136,313-321 https://doi.org/10.1016/0044-8486(95)01064-5
  46. Toledo, J. D., M. S. Golez, M. Doi and A. Ohno, 1999. Use of copepod nauplii during early feeding stage of grouper Epinepheills coioides. Fish. Sci., 65, 390-397 https://doi.org/10.2331/fishsci.65.390
  47. Uhlig, G., 1984. Progress in mass cultivation of harpacticoid copepods for maricurture purposes. Europ. Maricult. Soc., 8, 266-271
  48. Uye, S., 1988. Temperature-dependent development and growth of Calanlls siniclls (Copepoda: Calanoida) in the laboratory. Hydrobiologia, 167/168, 285-293 https://doi.org/10.1007/BF00026316
  49. Uye, S. and K. Sano, 1998. Seasonal vmiations in biomass, growth rate and production rate of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser., 163, 37-44 https://doi.org/10.3354/meps163037
  50. Watanabe, T. C., S. Kitajima and S. Fujita, 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34, 115-143 https://doi.org/10.1016/0044-8486(83)90296-X
  51. Williams, T. D. and M. B. Jones, 1999. Effects of temperature and food quantity on the reproduction of Tisbe battagliai (Copepoda: Harpacticoida). J. Exp. Mar. Biol. Ecol., 236, 273-290 https://doi.org/10.1016/S0022-0981(98)00209-3