Optimum Culture Density for the Intensive Mass Production in Cyclopoid Copepod, Paracyclopina nana

Cyclopoid 요각류, Paracyclopina nana의 대량배양을 위한 최적밀도

  • Lee Kyun-Woo (Korea Ocean Research und Development institute) ;
  • Park Heum-Gi (Faculty of Marine Bioscience & Technology, Kangnung National University)
  • 이균우 (한국해양연구원 해양생물자원연구본부) ;
  • 박흠기 (강릉대학교 해양생명공학부)
  • Published : 2005.02.01

Abstract

This study was performed to investigate the optimum density for the intensive mass production of cyclopoid copepod, Paracyclopina nana in terms of nauplii and adults production. Effect of three development stages on the fecundity of adult female for nauplii production, survival rate of P. nana nauplii with different initial nauplii culture densities for adults production and cannibalistic feeding behavior of P. nana was examined, respectively. The fecundity of adult female by different female, copepodite ana nauplii density in 2 ml water volume decreased with the density of adult female, but was not affected by the density of either copepodite or nauplii. The average daily nauplii production for a adult female in 8 L water volume was $2.3{\times}10^5$ individuals with the incubation density of 7 adult females/ml, and this average value was significantly higher than those values of 0.6 to $1.7\times10^5$ individuals with the incubation density of 1,3,5, 10 adult females/ml (P<0.05). Survival rate of P. nana nauplil with different initial nauplii culture densities in 5 L vessels for 15 days were 32.7, 30.7, 28.9 and $23.0\%$ with the culture density of 50, 100, 150 and 200 inds./ml, respectively, but these were significantly higher than those of values 19.7 and $18.4\%$ with the culture density of 250 and 300 inds./ml (P<0.05). Cannibalistic behavior of P. nana adults on their offspring was observed, but the behavior decreased when phytoplankton was supplemented though there was no statistical difference (P>0.05). These results may indicate that P. nana is adaptable to the hatchery conditions and this species is cultured at the high densities. Optimum culture density for nauplii and adults production of P. nana were 7 adult females/ml and 200 nauplii/ml, respectively.

본 연구는 P. nana의 집약적인 대량배양을 위한 최적 배양밀도를 규명하기 위한 것으로 nauplius 생산과 성체생산의 두 가지 측면에서 조사되었다. 2 ml 배양규모에서 성체 암컷 밀도에 따른 성체 암컷의 nauplius 생산력은 성체 암컷의 밀도가 증가함에 따라 감소하는 경향을 보였지만 copepodid와 nauplius의 밀도는 성체 암컷의 생산력에 영향을 미치지 않는 깃으로 나타났다 8 L배양 용량에서 일주일 동안 암컷의 일일 평균 생산량은 1, 3, 5, 7개체/ml실험구에서 각각 0.6, 1.1, 17, $2.3{\times}10^5$ 개체로 배양밀도가 증가할수록 생산량이 증가하였으나 10 개체 /ml로 배양한 실험구는 $1.3\times10^5$개체로 7 개체/ml로 배양한 실험구보다 낮은 생산량을 보였다. 5 L배양용기에서 15일 동안 P. nana nauplius의 접종 밀도에 따른 생존개체는 모든 실험구가 시간이 경과함에 따라 감소하는 경향을 보였으며, 15일째, C4-성체까지의 생존율은 50, 100, 150및 200개체/ml 실험구에서 각각 32.7, 307, 28.9 및 $23.0\%$로 배양밀도가 증가함에 따라 감소하는 경향을 보였으나 유의적인 차이는 없는 것으로 나타났다. 그러나 250 개체/ml와 300 개체/ml 로 배양한 실험구는 각각 $19.7\%$$18.4\%$로 50, 100, 150 개체/ml 실험구보다 낮은 생존율을 보였다. P. nana성체의 nauplius에 대한 공식은 있는 것으로 나타났으며 먹이의 공급 시 공식이 줄어드는 것으로 판단된다. 결과적으로 P. nann는 성체 생산을 위한 nauplius의 최대 접종밀도가 200개체/ml인 점을 고려해 볼 때, 비교적 고밀도로 배양이 가능하며 어류 종묘생산장에서 먹이 생물로 사용이 가능할 것으로 보인다.

Keywords

References

  1. Bollens, S. M., B. H. Frost and J. R. Cordell, 1994. Chemical, mechanical and visual cues in the vertical migration behavior of the marine planktonic copepod Acartia hudsonica. J. Plankton Res., 16, 555-564 https://doi.org/10.1093/plankt/16.5.555
  2. Cheng, S. H., H. C. Chen, S. L. Chang, T. I. Chen and I. C. Liao, 2001. Study on the optimal density of mass culture in copepod Apocyclops royi. The 6th asian fisheries forum book of abstracts, 58 pp
  3. Davis, C. S. and P. Alatalo, 1992. Effects of constant and intermittent food supply on life-history parameters in a marine copepod. Limnol. Oceanogr., 37, 1618-1639 https://doi.org/10.4319/lo.1992.37.8.1618
  4. Doi, M., J. D. Toledo, M. Salvacion, M. S. Golez, M. Santos and A. Ohno, 1997. Preliminary investigation of feeding performance of larvae of early red-spotted grouper, Epinephelus coioides, reared with mixed zooplankton. Hydrobiologia, 358, 259-263 https://doi.org/10.1023/A:1003193121532
  5. Hada, A. and S. Uye, 1991. Cannibalistic feeding behavior of the brackish-water copepod Sinocalanus tenellus. J. Plankton Res., 13, 155-166 https://doi.org/10.1093/plankt/13.1.155
  6. Hada, A., 1991. Effect of cannibalism on the laboratory cultured population of the brackish-water copepod Sinocalanus tenelIus. Bull. Plankton Soc. Japan, 38, 43-52
  7. Haury, L. R. and H. Yamazaki, 1995. The dichotomy of scales in the perception and aggregation behavior of zooplankton. J.Plankton Res., 17, 191-197 https://doi.org/10.1093/plankt/17.1.191
  8. Kahan, D., Y. Berman and T. Bar-El, 1988. Maternal inhibition of hatching at high population densities in Tigriopus japonicus (Copepoda, Crustacea). BioI. Bull., 174, 139-144 https://doi.org/10.2307/1541780
  9. Kimmerer, W. J., 1984. Spatial and temporal variability in egg production rates of the calanoid copepod Acrocalanus inermis. Mar. BioI., 78, 165-169 https://doi.org/10.1007/BF00394696
  10. Kirboe, T. and M. Sabatini, 1994. Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res., 16, 1353-1366 https://doi.org/10.1093/plankt/16.10.1353
  11. Lazzaretto, I., B. Salvato and A. Libertini, 1990. Evidence of chemical signalling in Tigriopus fulvus (Copepoda, Harpacticoida). Crustaceana, 59, 171-179 https://doi.org/10.1163/156854090X00642
  12. Laabir M., S. A. Poulet and A. Ianora, 1995. Measuring production and viability of eggs in Calanus helgolandicus. J. Plankton Res., 17, 1125-1142 https://doi.org/10.1093/plankt/17.5.1125
  13. Lee, K. W., 2004. Mass culture and food value of the cyclopoid copepod Paracyclopina nana Smirnov. Ph. D. thesis, Kangnung University, pp. 1-124
  14. Legier-Visser, M. E, J. G. Mitchell, A. Okubo and J. A. Fuhrman, 1986. Mechanoreception in calanoid copepods. A mechanism for prey detection. Mar. BioI., 90, 529-535 https://doi.org/10.1007/BF00409273
  15. Lipman, E. E., K. R. Kao and R. P. Phelps, 2001. Production of the copepod Oithona sp. under hatchery conditions. Aquaculture 2001: Book of abstracts, 379 pp
  16. Lonsdale, D. J., 1981. Influence of age-specific mortality on the life history traits of two estuarine copepods. Mar. Ecol. Prog.Ser., 5, 333-340 https://doi.org/10.3354/meps005333
  17. Miralto, A., A. Ianora, S. A. Poulet, G. Romano and M. Laabir, 1996. Is fecundity modified by crowding in the copepod Centropages typicus. J. Plankton Res., 18, 1033-1040 https://doi.org/10.1093/plankt/18.6.1033
  18. Ohman, M. D. and J. A. Runge, 1994. Sustained fecundity when population resources are in short supply: Omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol. Oceanogr 39, 21-36
  19. Ohno, A., T. Takahashi and Y. Taki, 1990. Dynamics of exploited populations of the calanoid copepod, Acartia tsuensis. Aquaculture, 84, 27-39 https://doi.org/10.1016/0044-8486(90)90297-Z
  20. Park, H. G., S. K. Kim, K. Y. Park and Y. J. Park, 1999a, High density cultivation of rotifer, Brachionus rotundiformis in the different diets. J. Korean Fish. Soc., 32, 280-283
  21. Park, H. G., K. W. Lee and S. K. Kim, 1999b. Growth of rotifer by the air, oxygen gas-supplied and the pH-adjusted productivity of the high density culture. J. Korean Fish. Soc., 32, 757-283
  22. Payne, M. F. and R. J. Rippingale, 2000. Rearing west Australian seahorse, Hippocampus subelongatus, juveniles on copepod nauplii and enriched Artemia. Aquaculture, 188, 353-361 https://doi.org/10.1016/S0044-8486(00)00349-5
  23. Payne, M. F. and R. J. Rippingale, 2001. Intensive cultivation of the calanoid copepod Gladioferens imparipes. Aquaculture, 201, 329-342 https://doi.org/10.1016/S0044-8486(01)00608-1
  24. Payne, M. F., R. J. Rippingale and J. J. Cleary, 2001. Cultured copepods as food for west Australian dhufish (Glaucosoma hebraicum) and pink snapper (Pagrus auratus) larvae. Aquaculture, 194, 137-150 https://doi.org/10.1016/S0044-8486(00)00513-5
  25. Stttrup J. G. and L. A. McEvoy, 2003. Live feeds in marine aquaculture. (in) J. G. Stttrup (ed.), Production and nutritional value of copepods. Blackwell Science Ltd, pp. 145-205
  26. Stttrup, J, G. and N. H. Norsker, 1997. Production and use of copepods in marine fish larviculture. Aquaculture, 155, 231-247 https://doi.org/10.1016/S0044-8486(97)00120-8
  27. Stttrup, J. G., K. Richardson, E. Kirkegaard and N. J. Pihl, 1986. The cultivation of Acartia tonsa Dana for use as a live food source for marine fish larvae. Aquaculture, 52, 87-96 https://doi.org/10.1016/0044-8486(86)90028-1
  28. Sun, B. and J. W. Fleeger, 1995. Sustained mass culture of Amphiascoides atopus a marine harpacticoid copepod in a recirculating system. Aquaculture, 136, 313-321 https://doi.org/10.1016/0044-8486(95)01064-5
  29. Toledo, J. D., M. S. Golez, M. Doi and A. Ohno, 1999. Use of copepod nauplii during early feeding stage of grouper Epinephelus coioides. Fish. Sci., 65, 390-397 https://doi.org/10.2331/fishsci.65.390
  30. Uchima, M and R. Hirano, 1986. Food of Oithana davisae (Copepoda: Cyclopoida) and the effect of food concentration at first feeding on the larval growth. Bull. Plankton Soc. Japan, 33, 29-41
  31. Uye, S. and K. Sano, 1995. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser., 118, 121-128 https://doi.org/10.3354/meps118121
  32. Van Leeuwen, H. C. and E. J. Maly, 1991. Changes in swimming behavior of male Diaptomus leptopus (Copepoda: Calanoida) in response to gravid females. Limnol. Oceanogr., 36, 1188-1195 https://doi.org/10.4319/lo.1991.36.6.1188