The Isolation and Antioxidative Effects of Vitexin from Acer palmatum

  • Published : 2005.02.01

Abstract

Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental factors are critical players in cellular damage and aging. In order to develop a new antiphotoaging agent, this work focused on the antioxidant effects of the extract of tinged autumnal leaves of Acer palmatum. One compound was isolated from an ethyl acetate soluble fraction of the A. palmatum extract using silica gel column chromatography. The chemical structure was identified as apigenin-8-C-beta-D-glucopyranoside, more commonly known as vitexin, by spectral analysis including LC-MS, FT-IR, UV, $^{1}H-$, and $^{13}C-NMR$. The biological activities of vitexin were investigated for the potential application of its anti-aging effects in the cosmetic field. Vitexin inhibited superoxide radicals by about $70\%$ at a concentration of $100\;{\mu}g/mL$ and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals by about $60\%$ at a concentration of $100\;{\mu}g/mL$. Intracellular ROS scavenging activity was indicated by increases in dichlorofluorescein (DCF) fluorescence upon exposure to UVB $20\;mJ/cm^2$ in cultured human dermal fibroblasts (HDFs) after the treatment of vitexin. The results show that oxidation of 5-(6-)chloromethyl-2',7'-dichlo-rodihydrofluorescein diacetate ($CM-H_{2}DCFDA$) is inhibited by vitexin effectively and that vitexin has a potent free radical scavenging activity in UVB-irradiated HDFs. In ROS imaging using a confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our findings suggest that vitexin can be effectively used for the prevention of UV-induced adverse skin reactions such as free radical production and skin cell damage.

Keywords

References

  1. Afitlhile, M. M., Dent, R. M., and Cowan, A. K., Changes in carotenoid composition in senescing leaves of Hordeum vulgare L. cv. Dyan. J. Plant Physiol., 142, 4349 (1993) https://doi.org/10.1016/S0176-1617(11)80105-7
  2. Aritomi, M., Chemical constituents in Aceraceous plants. 1. Flavonoid constituents in the leaves of Acer palmatum Thunberg. Yakugaku Zasshi, 83, 737-740 (1963) https://doi.org/10.1248/yakushi1947.83.7_737
  3. Aritomi, M., Chemical constituents in Aceraceous plants. 3. Flavonoid constituents in leaves of Acer cissifolium K. Koch. Chem. Pharm. Bull., 12, 841-843 (1964) https://doi.org/10.1248/cpb.12.841
  4. Bandoniene, D. and Murkovic, M., On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples (Malus domestica L.). J. Agric. Food Chem., 50, 2482-2487 (2002) https://doi.org/10.1021/jf011475s
  5. Bestwick, C. S. and Milne, L., Quercetin modifies reactive oxygen levels but exerts only partial protection against oxidative stress within HL-60 cells. Biochim. Biophys. Acta, 1528, 48-59 (2001)
  6. Blois, M. S., Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  7. Bonina, F., Puglia, C., Ventura, D., Aquino, R., Tortora, S., Sacchi, A., Saija, A., Tomaino, A., Pellegrino, M. L., and de Capariis P., In vitro antioxidant and in vivo photoprotective effects of a lyophilized extract of Capparis spinosa L. buds. J. Cosmet. Sci., 53, 321-335 (2002)
  8. Bors, W. and Michel, C., Chemistry of the antioxidant effect of polyphenols. Ann. N. Y. Acad. Sci., 957, 57-69 (2002) https://doi.org/10.1111/j.1749-6632.2002.tb02905.x
  9. Cathcart, R., Schwiers, E., and Ames, B. N., Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem., 134, 111-116 (1983) https://doi.org/10.1016/0003-2697(83)90270-1
  10. Dauborn, B. and Brueggemann, W., A spontaneous point mutation in rubisco large subunit gene impairing holoenzyme assemblyrenders the IV beta plastome mutant of Oenothera extremely light and chilling sensitive. Physiol. Plant, 104, 116-124 (1998) https://doi.org/10.1034/j.1399-3054.1998.1040115.x
  11. Feild, T. S., Lee, D. W., and Holbrook, N. M., Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood, Plant Physiol., 127, 566-574 (2001) https://doi.org/10.1104/pp.010063
  12. Furuno, K., Akasako, T., and Sugihara, N., The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids. Biol. Pharm. Bull., 25, 19-23 (2002) https://doi.org/10.1248/bpb.25.19
  13. Gaitan, E., Cooksey, R. C., Legan, J., and Lindsay, R. H., Antithyroid effects in vivo and in vitro of vitexin : a Cglycosylflavone in millet. J. Clin. Endocrinol. Metab., 80, 1144-1147 (1995) https://doi.org/10.1210/jc.80.4.1144
  14. Greenham, J., Harborne, J. B., and Williams, C. A., Identification of lipophilic flavones and flavonols by comparative HPLC, TLC, and UV spectral analysis. Phytochem. Anal., 14, 100-118 (2003) https://doi.org/10.1002/pca.693
  15. Ham, I. H., Oh, I. S., Whang, W. K., and Kim I. H., Pharmacoconstituents of Korean cultivated Rhubarb leaves-the flavonoids from leaves. Yakhak Hoeji, 38, 469-475 (1994)
  16. Harborne, J. B., Nature, Distribution and function of plant flavonoids. Prog. Clin. Biol. Res., 213, 15-24 (1986)
  17. Harman, D., Role of free radical reactions in aging and disease. J. Geriat. Dermatol., 5, 114-127 (1997)
  18. Katiyar, S. K., Afaq, F., Perex, A., and Mukhtar, H., Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis, 22, 287-294 (2001) https://doi.org/10.1093/carcin/22.2.287
  19. Khettab, N., Amory, M. C., Brigand, G., Bousquet, B., and Combre, A., Photoprotective effect of vitamins A and E on polyamine and oxygenated free radical metabolism in hairless mouse epidermis. Biochimie, 70, 1709-1713 (1988) https://doi.org/10.1016/0300-9084(88)90028-4
  20. LeBel, C. P., Ischiropoulos, H., and Bondy, S. C., Evaluation of the probe 2,7-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol., 5, 227-231 (1992) https://doi.org/10.1021/tx00026a012
  21. Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J., and Yun, J. W., Biological activities of the polysaccharides produced from submerged culture of the edible Basidiomycete Grifola Frondosa. Enzyme Microb. Technol., 6274, 1-8 (2003) https://doi.org/10.1016/S0141-0229(03)00026-7
  22. Mathews-Roth, M. M., Carotenoid pigment administration and the delay in development of UVB-induced tumors. Photochem. Photobiol., 42, 35-38 (1983) https://doi.org/10.1111/j.1751-1097.1985.tb03544.x
  23. Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52, 673-751 (2000)
  24. Nijveldt, R. J., Nood, E., Hoorn, D. EC, Boelens, P. G., Norren, K., and Leeuwen, P.AM, Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 74, 418-425 (2001) https://doi.org/10.1093/ajcn/74.4.418
  25. Norins, A. L., Free radical formation in the skin following exposure to ultraviolet light. J. Invest. Dermatol., 39, 445-448 (1962) https://doi.org/10.1038/jid.1962.65
  26. Oh, I. S., Whang, W. K., and Kim, I. H., Constituents of Crataegus pinnatifida val. psilosa Leaves (II) Flavonoids from BuOH fraction. Arch. Pharm. Res., 17, 314-317 (1994) https://doi.org/10.1007/BF02974168
  27. Prabhakar, M. C., Bano, H., Kumar, I., Shamsi, M. A., and Khan, M. S. Y., Pharmacological investigations on vitexin. Planta medica, 43, 396-403 (1981) https://doi.org/10.1055/s-2007-971532
  28. Riipi, M., Ossipov V., Lempa, K., Haukioja, E., Koricheva, J., Ossipova, S., and Pihlaja, K., Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics? Oecologia, 130, 380-390 (2002) https://doi.org/10.1007/s00442-001-0826-z
  29. Ryoo, Y. W., Suh, S. I., Mun, K. C., Kim, B. C., and Lee, K. S., The effects of the melatonin on ultraviolet-B irradiated cultured dermal fibroblasts. J. Dermatol. Sci., 27, 162-169 (2001) https://doi.org/10.1016/S0923-1811(01)00133-5
  30. Savini, I., DAngelo, I., Ranalli, M., Melino, G., and Avigliano, L., Ascorbic acid maintenance in HaCaT cells prevents radical formation and apoptosis by UVB. Free Radic. Biol. Med., 26, 1172-1180 (1999) https://doi.org/10.1016/S0891-5849(98)00311-6
  31. Seo, S. Y., Kim, E. Y., Kim, H., and Gwang, B. J., Neuroprotective effect of high glucose agains NMDA, free radical and oxygen-glucose deprivation through enhanced mitochondrial potentials. J. Neurosci., 19, 8849-8855 (1999)
  32. Shibamoto, T., Sulfur-containing heterocyclic compounds with antioxidative activity. Am. Chem. Soc., 564, 247-256 (1994)
  33. Tampo, Y., Kotamraju, S., Chitambar, C. R., Kalivendi, S. V., Keszler, A., Joseph, J., and Kalyanaraman, B., Oxidative stress-induced iron signaling is responsible for peroxidedependent oxidation of dichlorodihydrofluorescein in endothelial cells. Circ. Res., 92, 56-63 (2003) https://doi.org/10.1161/01.RES.0000048195.15637.AC
  34. Tobi, S. E., Gilbert, M., Paul, N., and McMillan, T. J., The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation. Int. J. Cancer, 102, 439-444 (2002) https://doi.org/10.1002/ijc.10730
  35. Trayner, I. D., Rayner, A. P., Freeamn, G. E., and Farzaneh, F., Quantitative multiwell myeloid differentiation assay using dichlorodihydrofluorescein diacetate ($H_2DCFDA$) or dihydrorhodamine 123 ($H_2R123$). J. Immunol. Methods, 186, 275-284 (1995) https://doi.org/10.1016/0022-1759(95)00152-Z
  36. Yoo, S. W., Kim, J. S., Kang, S. S., Son, K. H., Chang, H. W., Kim, H. P., Bae, K. H., and Lee, C. O., Constituents of the fruits and leaves of Euodia danielli. Arch. Pharm. Res., 25, 824-830 (2002) https://doi.org/10.1007/BF02976999
  37. Young, A. J., Wellings R., and Britton G., The fate of chloroplast pigments during senescence of primary leaves of Hordeum vulgare and Avena sativum. J. Plant Physiol., 137, 701-705 (1991) https://doi.org/10.1016/S0176-1617(11)81225-3
  38. Zhang, H., Joseph, J., Felix, C., and Kalyanaraman, B., Bicarbonate enhances the hydroxylation, nitration, and peroxidation reactions catalyzed by copper, zinc superoxide dismutase : intermediacy of carbomate anion radical. J. Biol. Chem., 275, 14038-14045 (2000) https://doi.org/10.1074/jbc.275.19.14038