A Stereoselective Asymmetric Synthesis of Antibiotic (-)-Fumagillol Using Claisen Rearrangement and Intramolecular Ester Enolate Alkylation as Key Steps

  • Kim Deukjoon (College of Pharmacy, Seoul National University) ;
  • Ahn Soon Kil (New Drug Research Laboratories, Chong Kun Dang Research Institute Cheonan) ;
  • Bae Hoon (Department of Chemistry and Biochemistry, Florida State University) ;
  • Kim Hak Sung (Wonkwang University, College of Pharmacy)
  • Published : 2005.02.01

Abstract

(-)-Fumagillol (1), a hydrolysis product of fumagillin, has been synthesized by several group from commercially available 1,2:5,6-di-O-isopropylidene-${\alpha}$-D-allofuranose in a highly stereoselective manner. Chiral centers on C5 and C6 came from D-allofuranose and the asymmetric center on C4 was accomplished by 1,3-chirality transfer using the Claisen rearrangement on a chiral allyl alcohol. Chirality, which is necessary on an epoxide consisting of the spiro-ring system, was diastereoselectively constructed by the well-known reaction, intramolecular ester enolate alkylation (IEEA), which showed that this reaction can be applied to the alpha-alkoxy ester system. The epoxide on the side chain was regioselectively introduced by the difference between the number of substituents on the vinyl groups. This accomplishment proved that IEEA can be a useful tool for the synthesis of complex molecules.

Keywords

References

  1. Bedel, O., Haudrechy, A., and LangloisY., A stereoselective formal synthesis of (-)-fumagillol. Eur. J. Org. Chem., 3813- 2819 (2004) https://doi.org/10.1002/ejoc.200400262
  2. Boiteau, J. G., Van de Weghe, P., and Eustache, J., A new, ring closing metathesis-based synthesis of (-)-fumagillol. Org. Lett., 3, 2737-2740 (2001) https://doi.org/10.1021/ol016343z
  3. Burke, S. D., Fobare, W. F., and Pacofsky, G. J., Chelation control of enolate geometry. Acyclic diastereoselection via the enolate Claisen rearrangement. J. Org. Chem., 48(26), 5221-5228 (1983) https://doi.org/10.1021/jo00174a013
  4. Corey, E. J. and Snider, B. B. Total synthesis of (${\pm}$)-fumagillin. J. Am. Chem. Soc., 94(7), 2549-2550 (1972) https://doi.org/10.1021/ja00762a080
  5. Eustache, J. and van de Weghe, The ring-Closing metathesis approach to fumagillol, Strategies and Tactics in Organic Synthesis, Elsevier, Londen, 4, 247-267 (2004)
  6. Fardis, M., Pyun, H. J., Tario, J., Jin, H., Kim, C. U., Ruckman, J., Lin, Y., Greean, L, and Hicke, B., Design, synthesis and evaluation of a series of novel fumagillin analogues. Bioorg. Med. Chem., 11, 5051-5058 (2003) https://doi.org/10.1016/j.bmc.2003.08.031
  7. Folkman, J. and Ingber, D., Inhibition of angiogenesis. Seminars in cancer biology. 3, 89-96 (1992)
  8. Griffith, E. C., Su, Z., Turk, B. E., Chen, S., Charng, Y, -H., Wu, Z., Biemann, K., and Liu, J. O., Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol., 4(6), 461-471 (1997) https://doi.org/10.1016/S1074-5521(97)90198-8
  9. Gurjar, M. K., Patil, V. J., and Pawar, S. M. Synthesis of (1R,5R)-2,6-dioxabicyclo [3.3.0]octan-3-one from D-glucose. Carbohyd. Res., 165(2), 313-317 (1987) https://doi.org/10.1016/0008-6215(87)80108-8
  10. Haga, M., Takano, M., and Tejima, S., 3-O-Methyl-D-allose and a facile route to 2- and 3-O-methyl-D-riboses. Carbohyd. Res., 21(3), 440-446 (1972) https://doi.org/10.1016/S0008-6215(00)84925-3
  11. Han, C. K., Ahn, S. K., Choi, N. S., Hong, R. K., Moon, S. K., Chun, H. S., Lee, S. J., Kim, J. W., Hong, C. I., Kim, D., Yoon, J. H., and No, K. T., Design and synthesis of highly potent fumagillin analogues from homology modeling for a human MetAP-2. Bioorg. Med. Chem. Lett., 10(1), 39-43 (2000) https://doi.org/10.1016/S0960-894X(99)00577-6
  12. Hanson, T. E. and Eble F. R., An antiphage agent isolated from Aspergillus sp. J. Bact., 58, 527-529 (1949)
  13. Hutchings, M., Moffat, D., and Simpkins, N. S., A concise synthesis of fumagillol. Synlett., 5, 661-663. (2001)
  14. Ingber, D. E., Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy. Seminars in cancer biology., 3, 57-63 (1992)
  15. Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamaru, T., Brem, H., and Folkman, J., Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature, 345, 555-557 (1990) https://doi.org/10.1038/348555a0
  16. Iversen, T. and Bundle, D. R., Benzyl trichloroacetimidate, a versatile reagent for acid-catalyzed benzylation of hydroxygroups. J. Chem. Soc., Chem. Commun., 23, 1240-1243, (1981) https://doi.org/10.1039/c39810001240
  17. Kallmerten, J. and Gould, T. J., Enolate Claisen rearrangement of glycolate esters. Tetrahedron Lett., 24, 5177-5180 (1983) https://doi.org/10.1016/S0040-4039(00)88390-2
  18. Katznelson, H. and Jamieson, C. A., Control of nosema disease of honeybees with fumagillin. Science, 115, 70-71 (1952) https://doi.org/10.1126/science.115.2977.70
  19. Killough, J. J., Magill, G. B., and Smith, R. C. The treatment of amebiasis with fumagillin. Science, 115, 71-72 (1952) https://doi.org/10.1126/science.115.2977.71
  20. Kim, D., Ahn, S. K., Bae, H., Choi, W. J., and Kim, H. S., An asymmetric total synthesis of (-)-fumagillol. Tetrahedron Lett., 38(25), 4437-4440 (1997) https://doi.org/10.1016/S0040-4039(97)00925-8
  21. Kim, D., Min, J., Ahn, S. K., Lee, H. W., Choi, N. S., and Moon, S. K., 5-Demethoxyfumagillol, a potent angiogenesis inhibitor isolated from Aspergillus Fumagatus. Chem. Pharm. Bull., 52, 447-450 (2003) https://doi.org/10.1248/cpb.52.447
  22. McCowen M. C., Callender, M. E., and Lawlis, J. F. Jr., Fumagillin (H-3), a new antibiotic with amebicidal properties. Science, 113, 202-203 (1951) https://doi.org/10.1126/science.113.2930.202
  23. Mitsunobu, O., The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis, 1, 1-28 (1981) https://doi.org/10.1055/s-1981-29317
  24. Roush, W. R., Ando, K., Powers, D. B., Halterman, R. I., and Palkowitz, A. D., Enantioselective synthesis using diisopropyl tartrate-modified (E)- and (Z)-crotylboronates: reactions with achiral aldehydes. Tetrahedron Lett., 29, 5579-5582 (1988) https://doi.org/10.1016/S0040-4039(00)80816-3
  25. Roush, W. R., Waltz, A. E., and Hong, L. K., Diastereo- and enantioselective aldehyde addition reactions of 2-allyl-1,3,2- dioxaborolane-4,5-dicarboxylic esters, a useful class of tartrate ester modified allylboronates. J. Am. Chem. Soc., 107, 8186 -8190 (1985) https://doi.org/10.1021/ja00312a062
  26. Sato, T., Tajima, K., and Fujisawa, T., Diastereoselective synthesis of erythro- and threo-2-hydroxy-3-methyl-4- pentenoic acids by the ester enolate Claisen rearrangement of 2-butenyl 2-hydroxyacetate. Tetrahedron Lett., 24(7), 729- 730 (1983) https://doi.org/10.1016/S0040-4039(00)81510-5
  27. Sin, N., Meng, L., Wang, M. Q. W., Wen, J. J., Bornmann, W.G., and Crews, C. M., The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. USA, 94, 6099-6103 (1997) https://doi.org/10.1073/pnas.94.12.6099
  28. Steglich, W. and Neises, B., 4-Dialkylaminopyridines as acylation catalysts. 5. Simple method for the esterification of carboxylic acids. Angew. Chem., 90, 556-557 (1978) https://doi.org/10.1002/ange.19780900718
  29. Taber, D. F., Christos, T. E., Rheingold, A. L., and Guzei, I. A., Synthesis of (-)-Fumagillin. J. Am. Chem. Soc., 121, 5589- 5590 (1999) https://doi.org/10.1021/ja990784k
  30. Tarbell, D. S., Carman R. M., Chapman, D. D., Cremer, S. E., Cross, A. D., Huffman, K. R., Kunstmann, M., McCorkindale, N. J., McNally, J. G. Jr., Rosowsky, A., Varino, F. H. L., and West, R. L. The chemistry of fumagillin. J. Am. Chem. Soc., 83, 3096-3113 (1961) https://doi.org/10.1021/ja01475a029
  31. Tarbell, D. S., Carman, R. M., Chapman, D. D., Huffman, K. R., and McCorkindale, N. J., Structure of fumagillin. J. Am. Chem. Soc., 82, 1005-1007 (1960) https://doi.org/10.1021/ja01489a067
  32. Vosburg, D. A., Weiler, S., and Sorensen, E. J., A concise synthesis of fumagillol. Angew. Chem. Int. Ed., 38, 971-974 (1999) https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<971::AID-ANIE971>3.0.CO;2-W
  33. Vosburg, D. A., Weiler, S., and Sorensen, E. J., Concise stereocontrolled routes to fumagillol, fumagillin, and TNP- 470. Chirality, 15, 156-166 (2003) https://doi.org/10.1002/chir.10181
  34. Zhang, P., Nicholson, D. E., Bujnicke, J. M., Su, X., Brendle, J. J., Ferdig, M., Kyle, D. E., Milhous, W. K., and Chiang, P. K., Angiogenesis inhibitors specific for methionine aminopeptidase 2 as drugs for malaria and leishmaniasis. J. Biomed. Sci., 9, 34-40 (2002) https://doi.org/10.1007/BF02256576