DOI QR코드

DOI QR Code

수력터빈 드래프트관을 통과하는 물고기에 미치는 난류의 영향 수치모의

Numerical Investgation of the Effect of Turbulent Flow on Fish Passing through Hydroturbine Draft Tube

  • 백중철 (조지아공대 토목환경공학과)
  • Paik, Joong-Cheol (School of Civil and Environmental Engineering, Georgia Institute of Technology)
  • 발행 : 2005.05.01

초록

본 연구는 수력발전시설에서 물고기의 생존과 상해를 유도하는 흐름현상을 파악하기 위한 진보된 수치해석기법의 개발을 다루고 있다. 원형 젤의 LES를 실시하여 난류젤의 전단지역에 물고기를 방류하는 실험의 결과를 수치적으로 해석하였다. 이 연구에서는 순간 LES 흐름장이 유속, 압력 그리고 와도의 강한 변동으로 특성지울 수 있으며, 이것이 물고기에게 시간평균 정상류보다 상당히 큰 추진력과 모멘트를 발휘함을 보여준다. 이 연구는 아울러 수력터빈 드래프트관에서의 부정류를 RANS/LES의 혼성모형 즉 DES를 이용하여 해석하였으며, 물고기가 드래프트관내에서 방향감각을 상실하거나 과도하게 지체하도록 할 수 있는 난류가 발생함을 보여준다.

This paper presents numerical works carried out for developing an advanced computational framework for understanding injury- and mortality-inducing flow phenomena in hydropower facilities. Large-eddy simulation (LES) of a circular jet flow is carried out to help interpret the results of recent experiments that exposed live fish to the shear zone of a turbulent jet. The instantaneous flow field of LES is characterized by intense velocity, pressure, and vorticity fluctuations, which could exert forces and moments on a fish considerably larger than those exerted by the same fish exposed to the corresponding steady, time-averaged flow. In this study, also, unsteady modeling of flow in a hydroturbine draft tubewas carried out using a hybrid unsteady RANS/LES, so-called detached-eddy simulation (DES). Results from DES show that the potential for disorientation and excessive residence times of fish within the draft tube is certainly considerable.

키워드

참고문헌

  1. Abernethy, C.S., Amidan, B.G. and Cada. G.F. (2001). Laboratory studies of the effects of pressure and dissolved gas supersaturation on turbine-passed fish DOE/ID-10853. U.S. Department of Energy Idaho Operations Office, Idaho Falls, Idaho
  2. Coutant, C.C., and Whitney, R.R. (2000). 'Fish behavior in relation to passage through hydropower turbines: a review.' Transactions of the American Fisheries Society. 129:351-380 https://doi.org/10.1577/1548-8659(2000)129<0351:FBIRTP>2.0.CO;2
  3. Grinstein, F. F., and DeVore, C.R. (1996). 'Dynamics of coherent structures and transition to turbulence in free square jets.' Physics cf Fluids, Vol. 8, No. 5 pp. 1237-1251 https://doi.org/10.1063/1.868895
  4. Hopping, P. N. (1992). Draft tube measurements of water velocity and air concentration in the 1:11.71 scale model of the hydroturbines for Norris dam. Report No. WR28-2-2-116, Tennessee Valley Authority Engineering Laboratory, Norris, Tennessee
  5. Nietzel, D.A., Richmond, M.C., Dauble, D.D., Mueller, R.P., Moursund, R.A., Abernethy, C.S., Guensch, G.R., and Cada, G.F. (2000). Laboratory studies of the effects of shear on fish: final report. DOE/ID-I0822. U.S. Department of Energy Idaho Operations Office, Idaho Falls, Idaho
  6. Paik, J., Ge, L., and Sotiropolous, F. (2004). 'Toward the simulation of complex 3D shear flows using unsteady statistical turbulence models.' International Journal of Heat and Fluid Flow. Vol. 25, No. 3, pp. 513-527 https://doi.org/10.1016/j.ijheatfluidflow.2004.02.002
  7. Paik, J., Sotiropolous, F., and Sale, M.J. (2005). 'Numerical simulation of swirling flow in a hydroturbine draft tube using unsteady statistical turbulence models.' Journal of hydraulic Engineering, ASCE, In press https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(441)
  8. Smagorinsky, J.S. (1963). 'General circulation experiments with the primitive equations, part 1, basic experiments.' Mon, Weather Rev. Vol. 91, pp. 99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  9. Shur, M., Spalart, P.R., Strelets, M., and Travin, A. (1999). 'Detached-eddy simulation of an airfoil at high angle of attack.' In: Rodi, W., Laurence, D. (Eds.), Turbulent Shear Flows., Elsevier Science, Amsterdam, pp. 669-678
  10. Sotiropoulos, F., and Adballah, S. (2000). 'A primitive variable method for the solution of 3D, incompressible, viscous flows.' Journal of computational Physics, Vol. 103, pp. 339-349 https://doi.org/10.1016/0021-9991(92)90405-N
  11. Sotiropoulos, F., and Constantinescu, G. (1997). 'Pressure-based residual smoothing operators for multi-stage pseudo compressibility algorithms.' Journal of computational Physics, Vol. 133, pp. 129-145 https://doi.org/10.1006/jcph.1997.5662
  12. Sotiropoulos, F., and Ventikos, Y. (1997). 'The virtual fish concept: numerical prediction of fish passage through hydraulic power plants.' Proceedings of the 26th International Association of Hydraulic Research Congress
  13. Spalart, P.R. (2000). 'Strategies for turbulence modelling and simulations.' International Journal of Heat and Fluid Flow. Vol. 21 pp. 252-263 https://doi.org/10.1016/S0142-727X(00)00007-2
  14. Spalart, P.R., and Allmaras, S.R. (1994). 'A one-equation turbulence model for aerodynamic flows.' La Recherche Aerospatiale, Vol. 1, pp. 5-21
  15. Spalart, P.R., Jou, W.H., Strelets, M., and Allmaras, S.R. (1997). 'Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach.' In: Liu, C., Liu, Z. (Eds.), Advances in DNS/LES, Greyden Press, Columbus OH
  16. Squires, K.D., Forsythe, J.R., Morton, S.A., Strang, W.Z., Wurtzler, K.W., Tomaro, R.F., Grismer, M.J., and Spalart, P.R. (2002). 'Progress on Detached-Eddy Simulation of massively separated flows.' AIAA Paper 2002-1021
  17. Ventikos, Y., Sotiropoulos, F., and Patel, V.C. (1996). 'Modelling complex draft-tube flows using near-wall turbulence closures.' Pages 140-149 in E. Cabrera, V. Espert, and F. Martinez, eds. Proceedings of 18th International Association of Hydraulic Research Symposium on Hydraulic Machinery and Cavitation, Kluwer Academic Publishers, Boston
  18. Wilson, R.V., and Demuren, A.O. (1998). 'Numerical simulation of turbulent jets with rectangular cross-section.' Journal of Fluids Engineering, ASME, Vol. 120, pp. 285-290 https://doi.org/10.1115/1.2820646