DOI QR코드

DOI QR Code

설마천 유역 범륜사사면의 토양수분 시공간 집중변화양상의 측정

Spatial-temporal Distribution of Soil Moisture at Bumreunsa Hillslope of Sulmachun Watershed Through an Intensive Monitoring

  • 이가영 (부산대학교 환경공학과) ;
  • 김기훈 (부산대학교 환경공학과) ;
  • 오경준 (부산대학교 환경공학과) ;
  • 김상현 (부산대학교 공과대학 환경공학과)
  • Lee, Ga-Young (Dept. of Environmental Engrg. Pusan National Univ.) ;
  • Kim, Ki-Hoon (Dept. of Environmental Engrg. Pusan National Univ.) ;
  • Oh, Kyung-Joon (Dept. of Environmental Engrg. Pusan National Univ.) ;
  • Kim, Sang-Hyun (Dept. of Environmental Engrg. Pusan National Univ.)
  • 발행 : 2005.05.01

초록

국내 산지사면에서의 토양수분의 시공간적 분포를 파악하기 위한 동축 다중체계의 TDR (Time Domain Reflectometry)을 설마천 유역의 범륜사 사면에 구축하고 토양수분 집중 모니터링을 실시하였다. 대상사면을 정밀 측량하여 정밀 수치지형모형(Digital Elevation Model)을 구축하고 흐름분배알고리즘에 적용하여 측정지점을 선정하였고 역 측량을 통한 효율적인 측정 체계를 구축하였다. 2003년 11월중의 380시간 동안의 집중 모니터링을 통한 토양수분 자료를 확보하였다. 확보된 토양수분자료는 대상사면의 지형분석을 통해 구분된 상부, 중부, 하부사면의 변화특성을 보여주고 있다. 물리적 수문 모형의 구성과정에서 중요한 의미를 부여하는 토양수분 실측치와의 유의성을 논의하였다.

Time Domain Reflectometry (TDR) with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture at the Bumreunsa hillslope of Sulmachun Watershed. An intensive surveying was performed to build a refined digital elevation model (DEM) and flow determination algorithms with inverse surveying have been applied to establish an efficient soil moisture monitoring system. Soil moisture data were collected through intensive monitoring during 380 hrs in November of 2003. Soil moisture data shows corresponding variation characteristics of soil moisture on the upper, middle and lower parts of the hillslope which were classified from terrain analysis. Measured soil moisture data have been discussed on the context of physical process of hydrological modeling.

키워드

참고문헌

  1. 김기훈, 김상현, 김형섭, 김원 (2005). '시공간 대표성을 고려한 토양수분모니터링 System의 구축 및 운영.' 한국수자원학회논문집, 제38권, 제1호, pp. 73-82 https://doi.org/10.3741/JKWRA.2005.38.1.073
  2. 김상현, 김경현, 정선희 (2001). '수치 고도 분석 : 분포형 흐름 분배 알고리즘.' 한국수자원학회논문집, 제34권, 제3호, pp. 241-251
  3. 한지영, 김상현, 김남원, 김현준 (2003). '유사 동력학적 습윤지수와 동력학적 습윤지수의 개발과 적용.' 한국수자원학회논문집, 제36권, 제6호, pp. 961-969 https://doi.org/10.3741/JKWRA.2003.36.6.961
  4. 한국건설기술연구원 (1998). '시험유역의 운영 및 수문 특성 조사 . 연구.' 연구보고서, 건기연 98-077
  5. Ambroise B. (2004). 'Variable 'active' versus 'contributing' area or periods : a necessary distinction.' Hydrological Processes. Vol. 18, pp. 1149-1155 https://doi.org/10.1002/hyp.5536
  6. Barling, R.D., Moore, I.D., and Grayson, R.B. (1994). 'A quais-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content' Water Resources Research, Vol. 30, No. 4. pp. 1029-1044 https://doi.org/10.1029/93WR03346
  7. Beven, K, and Germann, P. (1982). 'Macropores and Water Flow in Soils.' Water Resour. Res., Vol. 18, No. 5, pp. 1311-1325 https://doi.org/10.1029/WR018i005p01311
  8. Beven, K., and Kirkby. (1979). 'A physically-based, variable contributing area model of basin hydrology' Hydrological Sciences Bulletin, Vol 24, pp. 43-69 https://doi.org/10.1080/02626667909491834
  9. Beven, K., and Wood, E. (1983). 'Catchment geomorphology and the dynamics of runoff contributing areas.' J. Hydrol., Vol. 65, pp. 139-158 https://doi.org/10.1016/0022-1694(83)90214-7
  10. Montgomery, D.R., and Dietrich, W.E. (2002). 'Runoff generation in a steep, soil-mantled landscape.' Water Resour. Res., Vol. 38, pp. 7-1-7-8 https://doi.org/10.1029/2001WR000822
  11. O'Callaghan, J.F., and Mark, D.M. (1984). 'The extraction of drainage networks from digital elevation data.' Computer Vision, Graphics and Image Processing, Vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  12. O'Loughlin, J.F. (1986). 'Prediction of surface saturation zones in natural catchments by topographic analysis' Water Resources Research, Vol. 22, No. 5. pp. 794-804 https://doi.org/10.1029/WR022i005p00794
  13. Pellenq, J., Kalma, J., Boulet, G., Wooldrudge, S., Kerr, Y., and Chehbouni, A. (2003). 'A disaggregation scheme for soil moisture based on topography and soil depth.' J. Hydrol., Vol. 276, pp. 112-127 https://doi.org/10.1016/S0022-1694(03)00066-0
  14. Topp, G.C., Davis, J.L., and Annan, A.P. (1980). 'Electromagnetic determination of soil water content:measurements in coaxial transmission lines.' Water Resour. Res., Vol. 16, pp. 574-582 https://doi.org/10.1029/WR016i003p00574
  15. Quinn, P., Beven, K., Chevallier, P. and Planchon, O. (1991). 'The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models.' Hydrol. Process., Vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  16. Quinn, P., and Beven, K. (1993). 'Spatial and temporal predictions of soil moisture dynamics, runoff, variable source areas and evapotranspiration for Plynlimon, mid-Wales.' Hydrol. Process., Vol. 7, pp. 425-448 https://doi.org/10.1002/hyp.3360070407
  17. Uchida, T., Kosugi, K, and Mzuyana, T. (2001). 'Effect of pipeflow on hydrological process and its relation to landslide : a review of pipeflow studies in forested headwater catchments.', Hydrological Processes, Vol. 15, pp. 2151-2174 https://doi.org/10.1002/hyp.281
  18. Western, A.W., and Bloschl, G. (1999). 'On the spatial scaling of soil moisture.' J. Hydrol., Vol. 217, pp. 203-224 https://doi.org/10.1016/S0022-1694(98)00232-7
  19. Western, A.W., Bloschl, G., and Grayson, R. (1998). 'Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment.' J. Hydrol., Vol. 205, pp. 20-37 https://doi.org/10.1016/S0022-1694(97)00142-X
  20. Zhang, T., and Berndtsson, R. (1991). 'Analysis of soil water dynamics in time and space by use of pattern recognition.', Water Resources Research, Vol. 27, No. 7, pp. 1623-1636 https://doi.org/10.1029/91WR00436