DOI QR코드

DOI QR Code

Application of a One-Dimensional Upwind Model for Natural Rivers

일차원 상류이송형모형의 자연하도에 대한 적용

  • 김원 (한국건설기술연구원 수자원연구부) ;
  • 한건연 (경북대학교 토목공학과) ;
  • 우효섭 (한국건설기술연구원 수자원연구부)
  • Published : 2005.05.01

Abstract

The upwind model is well known to simulate shockwaves, but it is rarely applied to natural rivers because of problems caused by the source terms. Although several methods have been developed to deal with the source terms, none of them has been applied to natural rivers. This paper deals with application of the upwind model to the natural river. An implicit upwind model is applied to a hypothetical irregular channel and a natural river with highly irregular bed, width, and hydraulic structures. Different types of the flows including steady-state flow, flood wave, dam-break wave, and bore are simulated to test accuracy and applicability of the implicit upwind model. It is proved that the model can simulate various types of flows in natural rivers with high accuracy and robustness.

상류이송기법은 충격파 모의에 많이 사용되고 있으나 생성항의 처리 한계로 인해 자연하도에 적용된 사례는 매우 드문 상황이다. 생성항 처리를 위한 기법들이 개발되기는 하였으나 자연하도에 직접 적용될 수 있는 효과적인 기법은 없는 상황이기 때문이다. 본 논문에서는 상류이송형 일차원 음해 수치모형을 자연하도에 적용하였다. 상류이송모형은 하상과 하폭이 심하게 변화하는 가상하도와 하천구조물이 있는 실제 자연하천에 적용되었다. 또한 본 연구에서는 이 모형을 정상류, 부정류, 댐붕괴류, 보어의 전파 등 여러 가지 흐름에 적용하여 정확성과 적용성을 검증하였다. 검증결과 본 연구에서 개발된 모형은 자연하천에서 발생하는 여러 가지 형태의 흐름을 높은 정확도로 안정성있게 모의할 수 있는 것으로 나타났다.

Keywords

References

  1. 강민구, 박승우 (2003). 'ENO 기법을 이용한 2차원 유한체적 수치모형.' 한국수자원학회논문집, 제36권, 제1호, pp. 1-11 https://doi.org/10.3741/JKWRA.2003.36.1.001
  2. 김 원, 한건연 (2000a). '고정확도 수치기법을 이용한 하천 천이류 해석 I. : 모형개발.' 한국수자원학회논문집, 제34권, 제1호, pp. 45-55
  3. 김 원, 한건연 (2000b). '고정확도 수치기법을 이용한 하천 천이류 해석 II. : 적용.' 한국수자원학회논문집, 제34권, 제1호, pp. 57-65
  4. 김 원, 한건연, 우효섭, 최규현 (2005) . '상류이송기법에서의 새로운 생성항 처리기법.' 한국수자원학회논문집, 제38권, 제2호, pp. 155-166 https://doi.org/10.3741/JKWRA.2005.38.2.155
  5. 이정규, 김태관 (2003). '댐붕괴 문제의 해석에 관한 TVD-McCormack 기법의 적용.' 한국수자원학회논문집, 제36권, 제3호, pp. 365-374 https://doi.org/10.3741/JKWRA.2003.36.3.365
  6. 전정숙, 이봉희, 조용식 (2003). 'TVD 기법을 이용한 불연속 흐름의 수치해석.' 한국수자원학회논문집, 제36권, 제4호, pp. 597-608 https://doi.org/10.3741/JKWRA.2003.36.4.597
  7. Bermudez, A, and Vazquez, M.E. (1994). 'Upwind methods for hyperbolic conservation laws with source terms.' Computers & Fluids, Vol. 23, No. 8, pp. 1049-1071 https://doi.org/10.1016/0045-7930(94)90004-3
  8. Burguete, J., and Garcia-Navarro, P. (2001). 'Efficient construction of high resolution TVD conservative schemes for equations with source terms: Application to shallow water flows.' International Journal for Numerical Methods in Fluids, No. 37, pp. 209-248 https://doi.org/10.1002/fld.175
  9. Choi, S.U., and Paik, J.C. (2001). 'Performance test of high resolution schemes for ID dam break problem' Journal of Civil Engineering, KSCE, Vol. 5, No. 3, pp. 273-280 https://doi.org/10.1007/BF02830659
  10. Delis, A.I., Skeels, C.P., and Ryrie, S.C. (2000). 'Implicit high resolution methods for modeling one dimensional open channel flow.' Journal of Hydraulic Research, Vol. 38, No. 5, pp. 369-382 https://doi.org/10.1080/00221680009498318
  11. Fennema, R.J., and Chaudhry, M.H. (1986). 'Explicit numerical schemes for unsteady free surface flows with shocks.' Water Resources Research, Vol. 32, No. 13, pp. 1923-1930
  12. Fread, D.L. (1998). The NWS DAMBRK Model : Theoretical background/user documentation, HRL-256, Hydrologic Research Laboratory, National Weather Service
  13. Garcia-Navarro, P., Alcrudo, F., and Saviron, J.M. (1992). '1D open channel flow simulation using TVD McCormack scheme.' Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 10, pp. 1359-1372 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1359)
  14. Garcia-Navarro, P., Fras, A., and Villanueva, I. (1999). 'Dam break flow simulation: some results for one dimensional models of real cases.' Journal of Hydrology, Vol. 216, pp. 227-247 https://doi.org/10.1016/S0022-1694(99)00007-4
  15. Garcia-Navarro, P., and Vazquez Cendon, M.E. (2000). 'On numerical treatment of the source terms in the shallow water equations.' Computers & Fluids, Vol. 29, No. 8, pp. 951-979 https://doi.org/10.1016/S0045-7930(99)00038-9
  16. Goutal N., and Maurel F. (Eds.) (1997). Proceedings of the 2nd Workshop on Dam Break Wave Simulation, HE 43/97/016/B
  17. Harten, A., and Hyman, J.M. (1983). 'Self adjusting grid method for one dimensional hyperbolic conversion laws.' Journal of Computational Physics, Vol. 50, pp. 235-269 https://doi.org/10.1016/0021-9991(83)90066-9
  18. Hubbard, M.E., and Garcia-Navarro, P. (2000). 'Flux difference splitting and the balancing of source terms and flux gradients.' Journal of Computational Physics, Vol. 165, No. 1, pp. 89-125 https://doi.org/10.1006/jcph.2000.6603
  19. Jha, A.K., Akiyama, J., and Ura, M. (1996). 'A fully conservative Beam and Warming scheme for transient open channel flows.' Journal of Hydraulic Research, Vol. 34, No. 5, pp. 166-173
  20. Jin, M. and Fread, D.L. (1997). 'Dynamic flood routing with explicit and implicit numerical solution schemes.' Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 3, pp. 165-173 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(166)
  21. Roe, P.L. (1986). 'Upwind differenced schemes for hyperbolic conservation laws with source terms.' Proceedings of the Conference on Hyperbolic Problems, Carasso Riaviart and Serre (Editors), pp. 41., Springer Verlag, New York
  22. Vazquez Cendon, M.E. (1999). 'Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry.' Journal of Computational Physics, Vol. 148, No. 2, pp. 497-526 https://doi.org/10.1006/jcph.1998.6127
  23. Yang, J.Y., Hsu, C.A., and Chang, S.H. (1993). 'Computation of free surface flows.' Journal of Hydraulic Research, Vol. 31, No. 1, pp. 19-34 https://doi.org/10.1080/00221689309498857
  24. Zhou, J.G., Causon, D.M., and Ingram, D.M. (2001). 'The surface gradient method for the treatment of source terms in the shallow water equations.' Journal of Computational Physics, Vol. 168, No. 1, pp. 1-25 https://doi.org/10.1006/jcph.2000.6670

Cited by

  1. Estimation Technique of Computationally Variable Distance Step in 1-D Numerical Model vol.44, pp.5, 2011, https://doi.org/10.3741/JKWRA.2011.44.5.363