Partially Hydrolyzed Crosslinked Alginate-graft-Polymethacrylamide as a Novel Biopolymer-Based Superabsorbent Hydrogel Having pH - Responsive Properties

  • Pourjavadi A. (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology) ;
  • Amini-Fazi M. S. (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology) ;
  • Hosseinzadeh H. (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology)
  • 발행 : 2005.02.01

초록

In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacryl­amide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebis­acrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g­PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-poly­methacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the Alg-g-PMAM or the H-Alg-g-PMAM was characterized by FTIR spectroscopy. The effects of the grafting variables (i.e., concentration of MBA, MAM, and APS) and the alkaline hydrolysis conditions (i.e., NaOH concentration, hydrolysis time, and temperature) were optimized systematically to achieve a hydrogel having the maximum swelling capacity. Measurements of the absorbency in various aqueous salt solutions indicated that the swelling capacity decreased upon increasing the ionic strength of the swelling medium. This behavior could be attributed to a charge screening effect for monovalent cations, as well as ionic cross-linking for multivalent cations. Because of the high swelling capacity in salt solutions, however, the hydrogels might be considered as anti-salt superabsorbents. The swelling behavior of the superabsorbing hydrogels was also measured in solutions having values of pH ranging from 1 to 13. Furthermore, the pH reversibility and on/off switching behavior, measured at pH 2.0 and 8.0, suggested that the synthesized hydrogels were excellent candidates for the controlled delivery of bioactive agents. Finally, we performed preliminary investigations of the swelling kinetics of the synthesized hydrogels at various particle sizes.

키워드

참고문헌

  1. F. L. Buchholz and A. T. Graham, in Modern Superabsorbent Polymer Technology, Wiley, New York, 1997
  2. United States Department of Agriculture, US Patent 3, 981, 100 (1961)
  3. R. Po, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 34, 607 (1994) https://doi.org/10.1080/15321799408014168
  4. L. P. Krul, E. I. Narciko, Y. I. Matusevich, L. B. Yakimtsova, V. Matusevich, and W. Seeber, Polym. Bull., 45, 159 (2000) https://doi.org/10.1007/s002890070055
  5. F. A. Dorkoosh, J. Brussee, J. C. Verhoef, G. Borchard, M. Rafeiee-Tehrani, and H. E. Juninger, Polymer, 41, 8213 (2000) https://doi.org/10.1016/S0032-3861(00)00200-7
  6. K. M. Raju, M. P. Raju, and Y. M. Mohan, J. Appl. Polym. Sci., 85, 1795 (2000) https://doi.org/10.1002/app.10731
  7. D. W. Lim, K. J. Yoon, and S. W. Ko, J. Appl. Polym. Sci., 78, 2525 (2000) https://doi.org/10.1002/1097-4628(20001227)78:14<2525::AID-APP130>3.0.CO;2-Q
  8. J. Kost, in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., Wiley, New York, 1999, Vol. 1, p. 445
  9. N. A. Peppas and A. G. Mikes, in Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, Florida, 1986, Vol. 1
  10. A. S. Hoffman, in Polymeric Materials Encyclopedia. J. C. Salamone, Ed., CRC Press, Boca Raton, Florida, 1996, Vol. 5, p. 3282
  11. M. Yazdani-Pedram, J. Retuert, and R. Quijada, Macromol. Chem. Phys., 201, 923 (2000) https://doi.org/10.1002/1521-3935(20000601)201:9<923::AID-MACP923>3.0.CO;2-W
  12. Y. Sugahara and O. Takahisa, J. Appl. Polym. Sci., 82, 1437 (2001) https://doi.org/10.1002/app.1816
  13. G. M. Patel and H. C. Trivedi, Eur. Polym. J., 35, 201 (1999)
  14. S. Silong and L. Rahman, J. Appl. Polym. Sci., 76, 516 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000425)76:4<516::AID-APP9>3.0.CO;2-7
  15. R. Lapasin and S. Pricl, in Rheology of Industrial Polysaccharides, Theory and Applications, Blackie, Glasgow, 1995, p. 31
  16. M. Yalpani, in Polysaccharides Synthesis, Modifications and Structure/Property Relations, Elsevier, New York, 1998, p. 10
  17. J. A. Rowley, G. Madlambayan, and D. J. Mooney, Biomaterials, 20, 45 (1999) https://doi.org/10.1016/S0142-9612(98)00107-0
  18. A. Martinesen, I. Storro, and G. Skjak-Braek, Biotech. Bioeng., 39, 186 (1992) https://doi.org/10.1002/bit.260390210
  19. G. R. Mitchell and J. M. V. Blanshard, Texture Studies, 7, 219 (1976) https://doi.org/10.1111/j.1745-4603.1976.tb01263.x
  20. L. B. Peppas and R. S. Harland, in Absorbent Polymer Technology, Elsevier, Amsterdam, 1990
  21. P. J. Flory, in Principles of Polymer Chemistry, Ithaca, Cornell University Press, New York, 1953
  22. W. F. Lee and G. H. Lin, J. Appl. Polym. Sci., 79, 1665 (2001) https://doi.org/10.1002/1097-4628(20010103)79:1<1::AID-APP10>3.0.CO;2-V
  23. V. D. Athawale and V. Lele, Carbohydr. Polym., 35, 21 (1998) https://doi.org/10.1016/S0144-8617(97)00138-0
  24. V. D. Athawale and V. Lele, Starch/Starke, 50, 426 (1998) https://doi.org/10.1002/(SICI)1521-379X(199810)50:10<426::AID-STAR426>3.0.CO;2-#
  25. J. Chen and Y. Zhao, J. Appl. Polym. Sci., 75, 808 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6<808::AID-APP10>3.0.CO;2-3
  26. H. Hosseinzadeh, A. Pourjavadi, M. J. Zohouriaan-Mehr, and G. R. Mahdavinia, J. Bioact. Compat. Polym., submitted (2004)
  27. S. C. Hsu, T. M. Don, and W. Y. Chiu, Polym. Degrad. Stab. 75, 73 (2002) https://doi.org/10.1016/S0141-3910(01)00205-1
  28. H. Hosseinzadeh, A. Pourjavadi, and M. J. Zohouriaan-Mehr, J. Biomater. Sci. Polym. Eds., 15, 1499 (2004) https://doi.org/10.1163/1568562042459715
  29. E. Sjostrom, in Wood Chemistry: Fundamental and Applications, Academic Press, 1981, Chap. 9
  30. G. Pass, G. O. Philips, and D. J. Wedlock, Macromolecules, 10, 197 (1997) https://doi.org/10.1021/ma60055a039
  31. W. F. Lee and W. Y. Yuan, J. Appl. Polym. Sci., 77, 1760 (2000) https://doi.org/10.1002/1097-4628(20000822)77:8<1760::AID-APP13>3.0.CO;2-J
  32. C. K. Nisha, D. Dhara, and P. R. Chatterji, J. M. S. Pure Appl. Chem., A37, 1447 (2000)
  33. K. Burugapalli, D. Bhatia, V. Koul, and V. Choudhary, J. Appl. Polym. Sci., 82, 217 (2001) https://doi.org/10.1002/app.1816
  34. S. Lu, M. Duan, and S. Lin, J. Appl. Polym. Sci., 8, 1536 (2003)
  35. G. R. Mahdavinia, A. Pourjavadi, and M. J. Zohuriaan-Mehr, Polym. Adv. Technol., 15, 173 (2004) https://doi.org/10.1002/pat.408
  36. A. M. Lowman and N. A. Peppas, in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., John Wiley & Sons, New York, 1999, p. 139
  37. A. Richter, A. Bund, M. Keller, and K. Arndt, Sens. Actuators B, 99, 579 (2004) https://doi.org/10.1016/j.snb.2004.01.011
  38. L. H. Gan, G. R. Deen, Y. T. Gan, and K. C. Tam, Eur. Polym. J., 37, 1473 (2001) https://doi.org/10.1016/S0014-3057(00)00100-2
  39. F. L. Buchholz, in Superabsorbent Polymers: Science and Technology, F. L. Buchholz and N. A. Peppas, Eds., ACS Symposium Series 573, American Chemical Society, Washington, DC, 1994
  40. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 39, 6697 (1998) https://doi.org/10.1016/S0032-3861(98)00095-0
  41. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 40, 1753 (1999) https://doi.org/10.1016/S0032-3861(98)00394-2
  42. A. Pourjavadi, M. Sadeghi, and H. Hosseinzadeh, Polym. Adv. Technol., 15, 1 (2004) https://doi.org/10.1002/pat.479
  43. A. Pourjavadi, R. Mazidi, and H. Hosseinzadeh, J. Appl. Polym. Sci., Submitted (2004)
  44. A. Pourjavadi, M. J. Zohuriaan-Mehr, S. N. Ghasempoori, and H. Hossienzadeh, Reac. Func. Polym., submitted (2004)
  45. A. Pourjavadi, A. M. Harzandi, and H. Hossienzadeh, Eur. Polym. J., 40, 1363 (2004) https://doi.org/10.1016/j.eurpolymj.2004.02.016