Preparation for Protein Separation of an Ion-Exchange Polymeric Stationary Phase Presenting Amino Acid and Amine Units Through Surface Graft Polymerization

  • Published : 2005.02.01

Abstract

Ion-exchange polymeric stationary phases presenting amino acid and amino groups were prepared by the surface grafting of glycidyl methacrylate onto a silica gel surface and subsequent amination. Three kinds of amino acids-L-arginine (Arg), D-lysine (Lys), and D-histine (His)-were used in this study. An ion-exchange polymeric stationary phase presenting ethylene diamine (EDA) was also prepared by surface graft polymerization. Separation of the model proteins bovine serum albumin (BSA), chick egg albumin (CEA), and hemoglobin (Hb) was performed using the amino acid- and amine-derived columns. In separating the CEA/BSA mixture, the resolution time of BSA was longer than that of CEA when using the EDA column, whereas the resolution time of BSA was shorter than that of CEA when using the Arg, Lys, and His columns. In the separation of the Hb/BSA mixture, the resolution time of BSA was longer than that of Hb in the EDA column, whereas the resolution time of BSA was shorter than that of Hb in the amino acid columns (D-Lys, L-Arg, and D-His).

Keywords

References

  1. P. D. G. Dean, W. S. Johnson, and F. A. Middle, Affinity Chromatography : A Practical Approach, IRL Press Limited, Oxford, 1985
  2. P. R. Levison, C. Mumford, M. Streater, A. Brandt-Nielson, N. D. Pathirana, and S. E. Badger, J. Chromatogr. A, 760, 151 (1997) https://doi.org/10.1016/S0021-9673(96)00814-X
  3. S. H. Choi, K. P. Lee, J. G. Lee, and Y. C. Nho, Microchem. J., 68, 473 (2001) https://doi.org/10.1016/S0026-265X(00)00159-4
  4. K. Saito, T. Kaga, H. Yamagishi, and S. Hurusaki, J. Membr. Sci., 43, 131 (1989) https://doi.org/10.1016/S0376-7388(00)85092-9
  5. S. H. Choi and Y. C. Nho, Kor. J. Chem. Eng., 16, 725 (1999) https://doi.org/10.1007/BF02698343
  6. S. Kiyohara, M. Nakamura, K. Saito, K. Sugita, and T. Sugo, J. Membr. Sci., 152 143 (1999) https://doi.org/10.1016/S0376-7388(98)00215-4
  7. S. H. Choi and Y. C. Nho, J. Appl. Polym. Sci., 71, 38 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990207)71:6<999::AID-APP15>3.0.CO;2-C
  8. K. P. Lee, S. H. Choi, and H. D. Kang, J. Chromatogr. A, 948, 129 (2002) https://doi.org/10.1016/S0021-9673(01)01259-6
  9. S. H. Choi, Y. C. Nho, and G. T. Kim, J. Appl. Polym. Sic., 71, 643 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990207)71:6<999::AID-APP15>3.0.CO;2-C
  10. S. H. Choi, H. J. Kang, E. N. Ryu, and K. P. Lee, Radiati. Phys. Chem., 60, 495 (2001) https://doi.org/10.1016/S0969-806X(00)00422-9
  11. S. H. Choi, Y. H. Jeong, J. J. Ryoo, and K. P. Lee, Radiati. Phys. Chem., 60, 503 (2001) https://doi.org/10.1016/S0969-806X(00)00422-9
  12. C. H. Chen and W. C. Lee, J. Chromatogr. A, 921, 31 (2001) https://doi.org/10.1016/S0021-9673(01)00895-0
  13. S. H. Choi, K. P. Lee, and H. D. Kang, J. Appl. Polym. Sci., 88, 1153 (2003) https://doi.org/10.1002/app.11737
  14. S. H. Choi, Y. M. Hwang, and K. P. Lee, J. Chromatogr. A, 987, 323 (2003) https://doi.org/10.1016/S0021-9673(02)01455-3