DOI QR코드

DOI QR Code

나노구조재료의 소성변형 성질의 변형률속도 의존성

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials

  • 윤승채 (충남대학교 대학원 금속공학과) ;
  • 김형섭 (충남대학교 신소재공학부)
  • 발행 : 2005.02.01

초록

A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

키워드

참고문헌

  1. R. Z. Valiev, 2002, Materials Science: Nanomaterial Advantage, Nature, vol.419, pp.887-888 https://doi.org/10.1038/419887a
  2. R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, 2002, Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation, J. Mater. Res., vol.17, pp.5-8 https://doi.org/10.1557/JMR.2002.0002
  3. L. Lu, M. L. Sui, K. Lu, 2000, Superplastic Extensibility of Nanocrystalline Copper at Room Temperature, Science, vol.287, pp.1463-1466 https://doi.org/10.1126/science.287.5457.1463
  4. W. Y. Wang, M. Chen, F. Zhou, E. Ma, 2002, High Tensile Ductility in a Nanostructured Metal, Nature, vol.419, pp.912-914 https://doi.org/10.1038/nature01133
  5. H. S. Kim, Y. Estrin, 2001, Ductility of Ultrafine Grained Copper, Appl, Phys. Lett., vol.79, pp. 4155-4117
  6. Y. M. Wang, E. Ma, 2004, Three Strategies to Achieve Unif orm Tensile Deformation in a Nanostructured Metal, Acta Mater., vol.52, pp. 1699-1709 https://doi.org/10.1016/j.actamat.2003.12.022
  7. Y. Zhu, X. Liao, 2004, Nanostructured Metals: Retaining Ductility, Nature Mater., vol.3, pp.351-352 https://doi.org/10.1038/nmat1141
  8. H. S. Kim, Y. Estrin, M. B. Bush, 2000, Plastic Deformation Behaviour of Fine-Grained Materials, Acta Mater., vol.48, pp.493-504 https://doi.org/10.1016/S1359-6454(99)00353-5
  9. D. G. Morris, 1998, Mechanical Behaviour of Nanostructured Materials, Materials Science Foundations, vol.2 Trans Tech Publications Ltd, Switzerland
  10. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, H. Gleiter, 2002, Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation, Nature Mater., vol.1, pp. 45-49
  11. V. Yamakov, D. Wolf, S. R. Phillpot, H. Gleiter, 2002, Grain-Boundary Diffusion Creep in Nano-crystalline Palladium by Molecular-Dynamics Simulation, Acta Mater., vol.50, pp. 61-73 https://doi.org/10.1016/S1359-6454(01)00329-9
  12. H. S. Kim, 1998, A Composite Model for Mechanical Properties of Nanocrystalline Materials, Scripta Mater., vol.39, pp. I 057-1061
  13. H. S. Kim, M. B. Bush, 1999, The Effects of Grain Size and Porosity on The Elastic Modulus of Nanocrystalline Materials, Nanostruct. Mater., vol.11, pp. 361-367 https://doi.org/10.1016/S0965-9773(99)00052-5
  14. H. S. Kim, M. B. Bush, Y. Estrin, 2000, A Phase Mixture Model of a Particle Reinforced Composite with Fine Microstructure, Mater. Sci. Eng., vol. A276, pp. 175-185
  15. N. Wang, Z. Wang, K. T. Aust, U. Erb, 1995, Effect of Grain Size on Mechanical Properties of Nanocrystalline Materials, Acta Metall. Mater., vol. 43, pp. 519-528 https://doi.org/10.1016/0956-7151(94)00253-E
  16. Y. Estrin, 1996, Unified Constitutive Laws of Plastic Deformation (Krausz, A. S. and Krausz, K. Eds.), Academic Press, New York, p. 69
  17. H. S. Kim, S. I. Hong, S. J. Kim, 2001, On the Rule of Mixtures for Predicting the Mechanical Properties of Composites with Homogeneously Distributed Soft and Hard Particles, J. Mater. Proc. Techn., vol. 112, pp. 109-113
  18. A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, 1989, On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials, Scripta Metall., vol. 23, pp. 1679-1683 https://doi.org/10.1016/0036-9748(89)90342-6
  19. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, 2003, Some Critical Experiments on the Strain-Rate Sensitivity of Nanocrystalline Nickel, Acta Mater., vol. 51, pp. 5159-5172 https://doi.org/10.1016/S1359-6454(03)00365-3
  20. F. Dalla Torre, H. Van Swygenhoven, M. Victoria, 2002, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., vol. 50, pp. 3957-3970 https://doi.org/10.1016/S1359-6454(02)00198-2