참고문헌
- R. Z. Valiev, 2002, Materials Science: Nanomaterial Advantage, Nature, vol.419, pp.887-888 https://doi.org/10.1038/419887a
- R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, 2002, Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation, J. Mater. Res., vol.17, pp.5-8 https://doi.org/10.1557/JMR.2002.0002
- L. Lu, M. L. Sui, K. Lu, 2000, Superplastic Extensibility of Nanocrystalline Copper at Room Temperature, Science, vol.287, pp.1463-1466 https://doi.org/10.1126/science.287.5457.1463
- W. Y. Wang, M. Chen, F. Zhou, E. Ma, 2002, High Tensile Ductility in a Nanostructured Metal, Nature, vol.419, pp.912-914 https://doi.org/10.1038/nature01133
- H. S. Kim, Y. Estrin, 2001, Ductility of Ultrafine Grained Copper, Appl, Phys. Lett., vol.79, pp. 4155-4117
- Y. M. Wang, E. Ma, 2004, Three Strategies to Achieve Unif orm Tensile Deformation in a Nanostructured Metal, Acta Mater., vol.52, pp. 1699-1709 https://doi.org/10.1016/j.actamat.2003.12.022
- Y. Zhu, X. Liao, 2004, Nanostructured Metals: Retaining Ductility, Nature Mater., vol.3, pp.351-352 https://doi.org/10.1038/nmat1141
- H. S. Kim, Y. Estrin, M. B. Bush, 2000, Plastic Deformation Behaviour of Fine-Grained Materials, Acta Mater., vol.48, pp.493-504 https://doi.org/10.1016/S1359-6454(99)00353-5
- D. G. Morris, 1998, Mechanical Behaviour of Nanostructured Materials, Materials Science Foundations, vol.2 Trans Tech Publications Ltd, Switzerland
- V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, H. Gleiter, 2002, Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation, Nature Mater., vol.1, pp. 45-49
- V. Yamakov, D. Wolf, S. R. Phillpot, H. Gleiter, 2002, Grain-Boundary Diffusion Creep in Nano-crystalline Palladium by Molecular-Dynamics Simulation, Acta Mater., vol.50, pp. 61-73 https://doi.org/10.1016/S1359-6454(01)00329-9
- H. S. Kim, 1998, A Composite Model for Mechanical Properties of Nanocrystalline Materials, Scripta Mater., vol.39, pp. I 057-1061
- H. S. Kim, M. B. Bush, 1999, The Effects of Grain Size and Porosity on The Elastic Modulus of Nanocrystalline Materials, Nanostruct. Mater., vol.11, pp. 361-367 https://doi.org/10.1016/S0965-9773(99)00052-5
- H. S. Kim, M. B. Bush, Y. Estrin, 2000, A Phase Mixture Model of a Particle Reinforced Composite with Fine Microstructure, Mater. Sci. Eng., vol. A276, pp. 175-185
- N. Wang, Z. Wang, K. T. Aust, U. Erb, 1995, Effect of Grain Size on Mechanical Properties of Nanocrystalline Materials, Acta Metall. Mater., vol. 43, pp. 519-528 https://doi.org/10.1016/0956-7151(94)00253-E
- Y. Estrin, 1996, Unified Constitutive Laws of Plastic Deformation (Krausz, A. S. and Krausz, K. Eds.), Academic Press, New York, p. 69
- H. S. Kim, S. I. Hong, S. J. Kim, 2001, On the Rule of Mixtures for Predicting the Mechanical Properties of Composites with Homogeneously Distributed Soft and Hard Particles, J. Mater. Proc. Techn., vol. 112, pp. 109-113
- A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, 1989, On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials, Scripta Metall., vol. 23, pp. 1679-1683 https://doi.org/10.1016/0036-9748(89)90342-6
- R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, 2003, Some Critical Experiments on the Strain-Rate Sensitivity of Nanocrystalline Nickel, Acta Mater., vol. 51, pp. 5159-5172 https://doi.org/10.1016/S1359-6454(03)00365-3
- F. Dalla Torre, H. Van Swygenhoven, M. Victoria, 2002, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., vol. 50, pp. 3957-3970 https://doi.org/10.1016/S1359-6454(02)00198-2