DOI QR코드

DOI QR Code

2개의 구를 지나는 유동에 대한 수치 해석적 연구 (I) -유동방향으로 놓여진 2개의 구-

Numerical Simulation of Flows Past Two Spheres (I) -Two Spheres Aligned in the Streamwise Direction-

  • 윤동혁 (인하대학교 대학원 기계공학과) ;
  • 양경수 (인하대학교 기계공학부)
  • 발행 : 2005.02.01

초록

A parametric study on the interactions of two spheres aligned in the streamwise direction is carried out using an immersed boundary method. The numerical results for the case of single sphere for the range of $Rs{\le}300$ are in good agreement with other authors' experimental and numerical results currently available. Then, our main investigation is focused on identifying the change of the vortical structures in the presence of a nearby sphere aligned in the streamwise direction for the range $Re{\le}300$. It turns out that significant changes in physical characteristics are noticed depending on how close the two spheres are. In this paper, not only quantitative changes in the key physical parameters such as the force coefficients, but also qualitative changes in vortex structures are reported and analyzed.

키워드

참고문헌

  1. Taneda, S., 1956, 'Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers,' J. Phys. Soc. Japan, Vol. 11, pp. 1104-1108 https://doi.org/10.1143/JPSJ.11.1104
  2. Magarvey, R. H. and Bishop, R. L., 1961, 'Transition Ranges for Three-Dimensional Wakes,' Can. J. Phys., Vol. 39, pp. 1418-1422 https://doi.org/10.1139/p61-169
  3. Roos, F. W. and Willmarth, W. W., 1971, 'Some Experimental Results on Sphere and Disk Drag,' AIAA J., Vol. 9, No.2, pp. 285-291 https://doi.org/10.2514/3.6164
  4. Tomboulides, A. G., 1993, 'Direct and Large-Eddy Simulation of Wake Flows: Flow Past a Sphere,' PhD Thesis, Princeton University
  5. Johnson, T. A. and Patel, V. C., 1999, 'Flow Past a Sphere up to a Reynolds Numbers of 300,' J. Fluid Mech., Vol. 378, pp. 19-70 https://doi.org/10.1017/S0022112098003206
  6. Constantinescu, G. S. and Squires, K. D., 2000, 'LES and DES Investigations of Turbulent Flow over a Sphere,' AIAA J., 0540
  7. Sakamoto, H. and Haniu, H., 1990, 'A Study on Vortex Shedding from Spheres in a Uniform Flow,' ASME: J. Fluids Eng., Vol. 112, pp. 386-392 https://doi.org/10.1115/1.2909415
  8. Rowe, P. N. and Henwood, G. A., 1961, 'Drag Forces in Hydraulic Model of a Fluidised Bed-Part I,' Transactions of the Institute of Chemical Engineers, Vol. 39, pp. 43-54
  9. Lee, K. C., 1979, 'Aerodynamic Interaction Between Two Spheres at Reynolds Numbers Around $10^4$,' Aero. Q., Vol. 30, pp. 371-385 https://doi.org/10.1017/S000192590000857X
  10. Tsuji, Y., Morikawa, Y. and Terashima, K., 1982, 'Fluid-Dynamic Interaction Between Two Spheres,' Int. J. Multiphase Flow, Vol. 8, pp. 71-82 https://doi.org/10.1016/0301-9322(82)90008-8
  11. Zhu, C., Liang, S.-C. and Fan, L.-S., 1994, 'Particle Wake Effects on the Drag Force of an Interactive Particle,' Int. J. Multiphase Flow, Vol. 20, pp. 117-129 https://doi.org/10.1016/0301-9322(94)90009-4
  12. Chen, R. C. and Lu, Y.N., 1999, 'The Flow Characteristics of an Interactive Particle at Low Reynolds Numbers,' Int. J. Multiphase Flow, Vol. 25, pp. 1645-1655 https://doi.org/10.1016/S0301-9322(98)00082-2
  13. Chen, R. C. and Wu, J. L., 2000, 'The Flow Characteristics Between Two Interactive Spheres,' Chemical Engineering Science, Vol. 55, pp. 1143-1158 https://doi.org/10.1016/S0009-2509(99)00390-5
  14. Kim, I., Elghobashi, S. and Sirignano, W. A., 1993, 'Three-Dimensional Flow over Two Spheres Placed Side by Side,' J. Fluid Mech., Vol. 46, pp. 465-488 https://doi.org/10.1017/S0022112093000229
  15. Schouveiler, L., Brydon, A., Leweke, T. and Thompson, M.C., 2004, 'Interactions of the Wakes of Two Spheres Placed Side by Side,' Eur. J. Mech. B Fluids, Vol. 23, pp. 137-145 https://doi.org/10.1016/j.euromechflu.2003.05.004
  16. Kim, J., Kim, D. and Choi, H., 2001, 'An Immersed-Boundary Finite-Volume Method for Simulations of flow in Complex Geometries,' J. Comp. Phys., Vol. 171, pp. 132-150 https://doi.org/10.1006/jcph.2001.6778
  17. Jeong, J. and Hussain, F., 1995, 'On the Identification of a Vortex,' J. Fluid Mech., Vol. 285, pp. 69-94 https://doi.org/10.1017/S0022112095000462