Effect of Irrigation Water Depth on Greenhouse Gas Emission in Paddy Field

논물 담수심이 온난화 가스 배출에 미치는 영향

  • Received : 2005.04.01
  • Accepted : 2005.04.26
  • Published : 2005.06.30

Abstract

The increasing emission of greenhouse gases may change agricultural environment. The agronomic productivity will depend upon change of temperature, precipitation, solar radiation and fertilization. This study was conducted to investigate greenhouse gas emission with irrigation water depth in paddy field. Area of each experiment plot is $70m^2$, Three treatments with three replications were carried out in this experiment, which was laid out as randomized complete block design. The treatments of irrigation water were maximum field water capacity and 4 and 8 cm depth. The application rate of fresh rice straw was $8,000kg\;ha^{-1}$ in combination with chemical fertilizers ($110kg\;N\;ha^{-1}$, $45kg\;P_2O_5\;ha^{-1}$ and $57kg\;K_2O\;ha^{-1}$). The $CH_4$ emission was highest at 32 days after rice transplanting with rice straw treatment. The $CH_4$ emission in the plot of maximum field water capacity was lower compared with 4 and 8 cm of irrigation depth. $CH_4$ and $N_2O$ emission under different water depth in the paddy field were 30 and $1.52kg\;ha^{-1}$ at 8 cm depth, 281 and $1.71kg\;ha^{-1}$ at 4 cm depth, and 219 and $2.01kg\;ha^{-1}$ at water saturated condition. The total emission of greenhouse gases equivalent to $CO_2$ emission with rice straw application were $6,939kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $6,431kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $5,222kg\;CO_2\;ha^{-1}$ at water saturated condition. The GWPs without rice straw application were $4,449kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $3,702kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $4,579kg\;CO_2\;ha^{-1}$ at water saturated condition.

논토양에서 관개 깊이를 조절하여 온난화가스 배출특성을 구명하고, 그에 따른 온난화가스 배출량를 추정하여 온난화가스 배출 저감기술을 확립하고자 연구를 수행하였다. 볏짚시용후 담수 8 cm의 시기별 $CH_4\;flux$는 이앙 32일 경에 $23.9mg\;m^{-2}\;h^{-1}$로 가장 높았으며, 이앙 35일 이후부터 감소하기 시작하여 중간낙수 이후에는 $CH_4\;flux$가 급격히 감소하였다. 포화용수량 처리구의 시기별 $CH_4\;flux$는 이앙 32일에 $19.9mg\;m^{-2}\;h^{-1}$ 로 가장 높았으며, 전 생육시기 동안 담수 8 cm와 담수 4 cm에 비하여 $CH_4\;flux$는 적었다. 볏짚 무시용후 시기별 $CH_4\;flux$는 이앙 20일경 $2.2-3.8mg\;m^{-2}\;h^{-1}$의 범위를 보였으며 그 이후부터는 처리별 차이가 컸으나 이앙 50일 이후부터는 비슷한 경향을 보였다. 토양 Eh 변화는 벼 이앙후 20일부터 -100 mV로 낮아 졌으며, 중간낙수 이후인 이앙 60일경에는 50 mV로 상승하였고 논물 담수심이 낮을수록 토양 Eh는 높았다. 볏짚을 시용하지 않았던 구와 포화용수량 처리구에서의 토양 Eh변화는 볏짚 시용구에 비하여 벼 전 생육기간에 걸쳐서 높았다. 처리별 지구온난화지수는 볏짚 시용후 담수 8 cm 처리구가 $6,939kg\;CO_2\;ha^{-1}$, 담수 4 cm 처리구는 $6,431kg\;CO_2\;ha^{-1}$, 포화용수량 처리구는 $5,222kg\;CO_2\;ha^{-1}$ 이었다. 그리고 볏짚을 시용하지 않은 담수 8cm 처리구의 지구온난화지수는 $4,449kg\;CO_2\;ha^{-1}$, 담수 4 cm 처리구는 $3,702kg\;CO_2\;ha^{-1}$, 포화용수량 처리구는 $3,561kg\;CO_2\;ha^{-1}$ 이었다.

Keywords

References

  1. Denmead, O. T. 1995. Measuring fluxes of greenhouse gases betweenrice fields and the atmosphere. p. 15-29. In S. Peng (ed.) Climatechangeand rice. Springer, New York, NY, USA
  2. Duxbury, J. and A. R. Mosier. 1993. Status and issues regarding agricultural emissions of greenhouse gases. In T. Drennenand H. M. Kaiser(ed.) Agricultural dimensions of globalclimatechange. St. Lucie Press, Florida, USA
  3. Eichner, M. J. 1990. Nitrous oxide emissions from fertilized soils: Summary of available data. J. Environ. Qual.19:272-280 https://doi.org/10.2134/jeq1990.00472425001900020013x
  4. Gambrell, R. P. and W. H. Patrick, Jr. 1978. Chemical and microbiological properties of anaerbic soilsand sediments. p. 375-423. In Plant life in anaerobic environments. Ann Arbor Science Publishers Inc., Ann Arbor, Michigan, USA
  5. Holzapfel-Pschom, A., R. Conradand W. Seiler. 1985. Production, oxidation, and emission of methane in rice paddies. FEMS Microbiol. Ecol. 31:343-351 https://doi.org/10.1111/j.1574-6968.1985.tb01170.x
  6. Inubushi, K., M. Umebayashi and H. Wada. 1990. Methane emission from paddyfield. p. 249-250. In M. Koshino et al. (ed.) Transactions of 14th International Congress of Soil Science. Kyto, Japan
  7. Kludze H. K, R. D. Delaune and W. H. Patrick 1993 Aerenchyma formation and methane andoxygen exchange in rice. Soil Sci. Soc. Am. J. 57:386-391 https://doi.org/10.2136/sssaj1993.03615995005700020017x
  8. NIAST. 1987. Chemical analysis of soiland plant. National Institute of Agricultural Science andTechnology. Suwon, Korea
  9. Neue, H. U., and R. L. Sass. 1994. Trace gas emissions from rice fields. Environ. Sci. Res.48:119-147
  10. Patrick Jr., W. H., and R. D. Delaune. 1977. Chemical and biological redox systems affecting nutrient availability in the coastalwetlands. Geosci. Man 28:131-137
  11. Ponnamperuma, F. N. 1984. Effects of flooding on soils. p. 10-45. In T. T. Kozlowski (ed.) Flooding and plant growth. Academic PressInc., New York, NY, USA
  12. Sass, R. L., F. M. Fisher, P. A. Harcombe, and F. T Turner. 1990. Methane production and emission in a Texas rice field. Glob. Biogeochem. Cycle. 4:47-68 https://doi.org/10.1029/GB004i001p00047
  13. Tsuruta, H. 2001. Emission of nitrous oxide and nitric oxide from Andosols after the application of different forms of nitrogen fertilizers and mitigation options for their emissions. Japan ANIAGS No. 17,43-51
  14. Watanabe, I. 1990. Anaerobic decomposition of organic matter in folded rice soils. Org. Methane Rice 129:237-328
  15. Yagi, K., and K. Minami. 1993. Spatial and temporal variations of methane flux from a rice paddy field. p. 353-368. In R. S. Oremland (ed.) Biogeochemistry of global change: radiatively activetracegases. Chapman and HallInc., New York, NY, USA