Occurrence and Distribution of Heavy Metals and Natural Radioisotopes Recovered at the Abandoned Coal Mine Tailings

폐석탄광미에서 유래한 중금속과 자연방사능의 분포 및 발생 특성

  • Chung, Doug-Young (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Cho, Il-Sik (Department of Bio-Environmental Chemistry, Chungnam National University)
  • 정덕영 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 조일식 (충남대학교 농업생명과학대학 생물환경화학과)
  • Received : 2005.05.15
  • Accepted : 2005.06.01
  • Published : 2005.06.30

Abstract

This investigation was conducted to observe and verify the distribution and their occurrence between heavy metals and natural isotopes in the soil collected at the 40 locations from the abandoned coal mine areas to the sediment of Chungra reservoir located at Chungra-Myon Boryung city, Chungnam. The results of the investigation showed that there were distinctive differences of the contents for the heavy metals and the natural isotopes between the area influenced by the coal mine tailing and the non-influenced area. The amounts of the heavy metals were Pb ($1.32-29.96mg\;kg^{-1}$), Cd ($0.15-0.76mg\;kg^{-1}$), Cu ($0.28-49.67mg\;kg^{-1}$), and Cr ($1.31-13.18mg\;kg^{-1}$) while the averages were Cu ($12.43mg\;kg^{-1}$), Pb ($10.44mg\;kg^{-1}$), Cr ($4.87mg\;kg^{-1}$), Cd ($0.51mg\;kg^{-1}$). The standard deviations of Pb and Cu were significantly higher compared to other heavy metals investigated in this experiment. And the amounts of the natural isotopes measured from the dried soil samples were Pb-210 ($4.87dpm\;g^{-1}$), Th-234 ($3.52dpm\;g^{-1}$), Ra-226 ($2.88dpm\;g^{-1}$), Ra-228 ($7.30dpm\;g^{-1}$), K-40 ($58.06dpm\;g^{-1}$) for all locations whereas Cs-137 which is fall-out by nuclear experiment from atmosphere was rarely found. From these results we found that the amounts of natural isotopes such as Pb-210 (4.41%), Th-234 (3.60%), and Ra-226 (2.09%) were less than those found in the coal-tailing while the proportion of Ra-228 (266%) and K-40 (308%) were significantly higher than those in the coal-tailing. Also occurrence of correlations between the amounts of the heavy metals and the natural isotopes was proportionally related.

본 연구는 충남 보령시 청라면에 위치한 폐광산광미로부터 청라저수지 저니토에 이르기까지 토양에 존재하는 중금속과 자연방사능원소간의 발생과 분포에 대하여 조사하였다. 조사 결과 광미영향 지점과 비영향 지점간의 중금속과 자연방사능원소 함량에는 현저한 차이가 있었다. 중금속의 분포 특성은 Pb ($1.32-29.96mg\;kg^{-1}$, 평균 $10.44mg\;kg^{-1}$), Cd ($0.15-0.76mg\;kg^{-1}$, 평균 $0.51mg\;kg^{-1}$), Cu ($0.28-49.67mg\;kg^{-1}$, 평균 $12.43mg\;kg^{-1}$), Cr ($1.31-13.18mg\;kg^{-1}$, 평균 $4.87mg\;kg^{-1}$)으로 조사 되었다. 그리고 Pb와 Cu의 조사지점별 함량 변이는 다른 중금속에 비해 매우 높았다. 건조한 토양을 기준으로 한 자연방사능 함량은 Pb-210 ($4.87dpm\;g^{-1}$), Th-234 ($3.52dpm\;g^{-1}$), Ra-226 ($2.88dpm\;g^{-1}$), Ra-228 ($7.30dpm\;g^{-1}$), K-40 ($58.06dpm\;g^{-1}$) 순으로 나타났으나 핵실험 등의 낙진으로 인하여 대기로부터 유입되는 Cs-137은 발견되지 않았다. 이러한 결과를 기준으로 하여 석탄광미 자체에 포함된 자연방사능 함량과 조시지점에서 조사된 자연방사능 함량을 비교하였을 때 Pb-210 (4.41%), Th-234 (3.60%), Ra-226 (2.09%)로 매우 낮은 비율로 조사되었으나 Ra-228 (266%)과 K-40 (308%)은 석탄광미보다 광미장 외의 지점에서 더 높은 비율로 존재함을 알 수 있었다. 그리고 중금속과 자연방사능의 발생 정도 사이에는 상관관계가 낮았다.

Keywords

References

  1. Adriano, D. C. 1992. Biogeochemistry of trace metals. Lewis publishers, Boca Raton, FL, USA
  2. de Meeus. C, G. H. Eduljee, and M. Hutton. 2002.Assessment and management of risks arising from exposure to cadmium in fertilizers. Sci.Total Environ. 291:167-187 https://doi.org/10.1016/S0048-9697(01)01098-1
  3. Lee, D. K., D. Y. Chung. and S. K. Lee. 1999. Sequential fractionation of heavy metalsfrom mine tailings and two seriesof agricultural soils. J. Korean Soc. Soil Sci. Fert. 32:375-382
  4. Fergusson, J. E. 1990. The heavy elements : Chemistry, environmental impact and health effects. Pergamon press, New York, NY, USA
  5. Grenthe, I. 1992. Chemical thermodynamics of uranium. NorthHolland, New York, NY, USA
  6. Holmgren, G.G. S.,M.W.Meyer, R.L. Chaney, and R.B. Daniels. 1993. Cadmium, lead, zinc, copper, andnickel in agricultural soils of the United States of America. J. Environ. Qual. 22:335-348 https://doi.org/10.2134/jeq1993.00472425002200020015x
  7. Clark, I., and P. Fritz. 1997. Environmental isotopes in hydrogeology. Lewis publishers, Boca Raton, FL, USA
  8. Keller. A., B. von Steiger, S. E. A. T. M. van der Zee, and R. Schulin. 2001. A stochastic empirical model for regional heavymetal balances in agroecosystems. J. Environ. Qual. 30:1976-1989 https://doi.org/10.2134/jeq2001.1976
  9. Ma, L. Q., and G. N. Rao. 1997. Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils. J. Environ. Qual. 26:788-794 https://doi.org/10.2134/jeq1997.00472425002600030028x
  10. Robert, G., and D. Steel. 1980. Principles and procedures of statistics. McGraw-Hili Book Co., NewYork, NY, USA
  11. Selvasekarapandian, S. 2000. Natural radionuclide distribution in soilof Gudalire, India. Appl. Radial. Isotopes 52:299-306
  12. Tessier, A., P. G. C. Campell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-851. https://doi.org/10.1021/ac50043a017
  13. Vaithiyanathan, P., A. Ramanathan, and V. Subramanian. 1993. Transport and distribution of heavy metals in Cauvery River. Water Air Soil Poll. 71:13-28 https://doi.org/10.1007/BF00475509
  14. Zhang, P. C., and P. V. Brady. 2002. Geochmistry of soil radionuclides. Soil Science Society of America, Madison, WI, USA