Comparison of Sampling Methods for On-Farm Use Quick Test Procedure of Soil Nitrate

토양의 질산태질소 현장검정을 위한 시료 채취방법 비교

  • Kang, Seong-Soo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Ki-In (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chung, Keun-Yook (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Hong, Soon-Dal (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2005.01.15
  • Accepted : 2005.02.07
  • Published : 2005.02.28

Abstract

The procedure of soil sampling for on-farm quick test of soil nitrate is very important to improve practical application without weighing or drying soil. To improve application of test strip reflectometer as a quick on-farm analytical procedure for the estimation of soil nitrate concentration, three sampling methods such as gravimetric sampling (GS), particle density sampling (PDS) and bulk density sampling (BDS) for on-farm analytical procedure were investigated with twelve soils of 45 to $281mg\;kg^{-1}$ nitrate nitrogen concentration. The nitrate nitrogen concentrations measured from different soils were compared with two analytical methods, ion electrode method as a standard laboratory analysis (SLA) and test strip reflectometer at three moisture conditions, viz. air dried soil, 20 and 40% of maximum water holding capacity (MWHC). Nitrate nitrogen concentration measured by test strip reflectometer was significantly correlated with that of SLA, and the coefficients of variation (CV) were in the range of 3.5 to 10.9%. These CV values less than 10.9% were thought to be acceptable for the measurement of soil nitrate as an on-farm real time analytical procedure. The nitrate nitrogen concentration by BDS for test strip reflectometer as well as ion electrode method was more similar to that of SLA compared with those by GS and PDS especially in case of moist soils. This result suggests that the BDS is more useful than GS and PDS in case of on-farm analytical procedure of soil nitrate for moist soils. Further the practical measurement by BDS could be improved by substituting the bottle cap with a larger container.

토양시료의 건조 과정이나 칭량과정을 수행하기 곤란한 현장 검정법에서 분석시료의 채취방법은 측정치의 신뢰성에 크게 영향을 미친다. 토양의 질산태 질소 함량이 45에서 $281mg\;kg^{-1}$으로 분포되는 12개 토양을 이용하여 질산태 질소 간이 검정법으로 효율적인 Test Strip 측광기 검정법에 대한 현장 활용성 증진방안이 비교 검토 되었다. 분석법은 실험실 전극법과 간이 측광기법으로 구분하고 채취방법은 중량법, 용적밀도법 (병마개 이용한 시료채취), 입자밀도법 (100 mL 실린더의 10 mL 용적을 토양으로 채움) 등 3가지 방법으로 비교하였으며, 또한 토양수분 조건은 풍건토, 최대용수량의 20% 및 40% 조건으로 달리하여 질산태 질소 함량의 상호관계를 평가하였다. Test strip 측광기법에 의한 질산태 질소 함량의 7반복 측정에서 변동계수(cv)는 3.5%에서 10.9%를 보이며 실험실 이온 전극법에 의한 질산태 질소 함량과 고도로 유의성 있는 상관을 보였다. 변동계수 10.9% 이하 재현성을 갖는 test strip 측광기법은 질산태질소의 현장검정법으로서 활용 가능한 것으로 생각되었다. 실험실 이온 전극법 뿐 아니라 test strip 측광기법에서 용적밀도법으로 측정된 질산태 질소 함량은 중량법 및 입자밀도법에 의한 측정치보다 표준 이온전극법에 의해 측정된 질산태 질소 함량과 더 근접되는 결과를 보였다. 이러한 결과는 토양의 수분함량이 높을수록 더욱 현저하여 용적밀도법의 의한 시료 채취방법은 토양의 수분조건에 의한 영향을 가장 적게 받는 것으로 확인되었다. 따라서 용적밀도법의 시료 채취용기를 병마개에서 보다 큰 용기로 교체한다면 test strip 측광기법에 의한 현장검정법의 활용성을 증진시킬 수 있을 것으로 생각되었다.

Keywords

References

  1. Bischoff. M.. A. M. Hiar. and R. F. Turco. 1996. Evaluation of nitrate analysis using test strips : Comparison with two analytical laboratory methods. Commun. Soil Sci. Plant Anal. 27:2675-2774 https://doi.org/10.1080/00103629609369731
  2. Bundy. L. G., and T. W. Andraski. 1993. Soil and plant nitrogen availability tests for com following alfalfa. J. Production Agric. 6:200-206 https://doi.org/10.2134/jpa1993.0200
  3. Bundy. L. G.. and T. W. Andraski. 1995. Soil yield potential effects on performance of soil nitrate tests. J. Production Agric. 8:561-568 https://doi.org/10.2134/jpa1995.0561
  4. Durieux. R. P., H. J. Brown. E. J. Stewart. J. Q. Zhao. W. E. Jokela. and F. R. Magdoff. 1995. Implication of nitrogen management strategies for nitrate leaching potential: Role of nitrogen source and fertilizer recommendation system. Agron. J. 87:884-887 https://doi.org/10.2134/agronj1995.00021962008700050017x
  5. Fox. R. H., J. S. Shenk. W. P. Piekielek. M. O. Westerhaus. J. D. Toth. and K. E. Macneal. 1993. Comparison of near-infrared spectroscopy and other soil nitrogen availability quick tests for com. Agron. J. 85:1049-1053 https://doi.org/10.2134/agronj1993.00021962008500050017x
  6. Hartz. T. K. 1994. A quick test procedure for soil nitrate-nitrogen. Commun. Soil Sci. Plant Anal. 25:511-515 https://doi.org/10.1080/00103629409369058
  7. Heckman, J. R., R. Govindasamy, D. J. Prostak, E. A. Chamberlain, W. T. Hlubik, R. C. Mickel, and E. P. Prostko. 1996. Corn response to sidedress nitrogen in relation to soil nitrate concentration. Commun. Soil Sci. Plant Anal. 27:575-583 https://doi.org/10.1080/00103629609369578
  8. Holden, N. M., and D. Scholefield. 1995. Paper test-strips for rapid determination of nitrate tracer. Commun. Soil Sci. Plant Anal. 26: 1885-1894 https://doi.org/10.1080/00103629509369415
  9. Hong, S. D., R. H. Fox, and W. P. Piekielek. 1990. Field evaluation of several chemical indexes of soil nitrogen availability. Plant Soil 123:83-88 https://doi.org/10.1007/BF00009929
  10. Hong, S. D., and H. T. Park. 2000. The test strip reflectometer method as a quick test procedure for soil nitrate nitrogen. J. Korean Soc. Soil Sci. Fert. 33:369-375
  11. Hong, S. D. 1998. Fertilizer recommendation based on soil testing for tomato in plastic film house. J. Korean Soc. Soil Sci. Ferl. 31:350-358
  12. Kwak, H. K., Y. S. Song, and C. W. Hong. 1997. Nitrogen recommendation based on nitrate test for chinese cabbage grown in plastic film house. J. Korean Soc. Soil Sci. Fert. 30:89-93
  13. Sah, R. N. 1994. Nitrate nitrogen determination - A critical review. Commun. Soil Sci. Plant Anal. 25:2841-2869 https://doi.org/10.1080/00103629409369230
  14. Spellman, D. E., A. Rongni, D. G. Westfall, R. M. Waskom, and P. N. Soltanpour. 1996. Pre-sidedress nitrate soil testing to manage nitrogen fertility in irrigated corn in a semi-arid environment. Commun. Soil Sci. Plant Anal. 27:561-574 https://doi.org/10.1080/00103629609369577
  15. Vanotti. M. B., and L. G. Bundy. 1994. Corn nitrogen recommendations based on yield response data. J. Production Agric. 7:249-256 https://doi.org/10.2134/jpa1994.0249