핵연료피복관용 Zr 합금의 제조공정에 따른 미세조직 및 부식거동

Microstructure and Corrosion Behavior of Zr Alloys with Manufacturing Process

  • 김현길 (한국원자력연구소 지르코늄신합금 핵연료피복관개발팀, 한전원자력연료주식회사) ;
  • 최병권 (한국원자력연구소 지르코늄신합금 핵연료피복관개발팀, 한전원자력연료주식회사) ;
  • 김규태 (한국원자력연구소 지르코늄신합금 핵연료피복관개발팀, 한전원자력연료주식회사) ;
  • 김선두 (한국원자력연구소 지르코늄신합금 핵연료피복관개발팀, 한전원자력연료주식회사) ;
  • 박찬현 (한국원자력연구소 지르코늄신합금 핵연료피복관개발팀, 한전원자력연료주식회사) ;
  • 정용환 (한국원자력연구소 지르코늄신합금 핵연료피복관개발팀, 한전원자력연료주식회사)
  • Kim, H.G. (Zirconium Fuel Cladding Team, KAERI, Korea Nuclear Fuel Co., Ltd.) ;
  • Choi, B.K. (Zirconium Fuel Cladding Team, KAERI, Korea Nuclear Fuel Co., Ltd.) ;
  • Kim, K.T. (Zirconium Fuel Cladding Team, KAERI, Korea Nuclear Fuel Co., Ltd.) ;
  • Kim, S.D. (Zirconium Fuel Cladding Team, KAERI, Korea Nuclear Fuel Co., Ltd.) ;
  • Park, C.H. (Zirconium Fuel Cladding Team, KAERI, Korea Nuclear Fuel Co., Ltd.) ;
  • Jeong, Y.H. (Zirconium Fuel Cladding Team, KAERI, Korea Nuclear Fuel Co., Ltd.)
  • 투고 : 2005.08.19
  • 심사 : 2005.09.17
  • 발행 : 2005.09.30

초록

The corrosion behaviors of Zr-based alloys were very sensitive to their microstructures which were determined by manufacturing process. The specimens of Zr-based alloy named as HANA-4 for nuclear fuel cladding were investigated in order to get the optimized manufacturing process such as the intermediate annealing temperature and cold working steps after the ${\beta}$ quenching. From the microstructural analysis, cold worked microstructure of the samples was changed to the recrystallized microstructure by performed process. The corrosion behaviors of HANA-4 alloy were affected by the different manufacturing process. The ${\beta}$-Zr phase was formed in the matrix and the Nb concentration in the ${\beta}$-Zr phase was increased as progressing the manufacturing process. So, it was found that the corrosion rate of HANA-4 alloy was affected by the Nb concentration in the matrix.

키워드

과제정보

연구 과제 주관 기관 : 과학기술부

참고문헌

  1. A. V. Nikulina, J. Nucl. Mater., 238 (1996) 205 https://doi.org/10.1016/S0022-3115(96)00453-9
  2. R. J. Comstock, G. Schoenberger and G. P. Sabol, Zirconium in the Nuclear Industry, ASTM STP 1295 (1996) 710
  3. K. Takeda and H. Anada, Zirconium in the Nuclear Industry, ASTM STP 1354 (2000) 592
  4. Y. H. Jeong, H. G. Kim and T. H. Kim, J. Nucl. Mater., 317 (2003) 1
  5. F. Garzarolli, H. Stehle and E. Steinberg, Zirconium in the Nuclear Industry, ASTM STP 1295 (1996) 12
  6. C. E. Lundin and R. H. Cox, USAEC Report, GEAP4089, 1 (1962) 9
  7. Y. S. Kim, H. G. Kim and Y. H. Jeong, J. Kor. Inst. Met. & Mater., 40(8) (2002) 819
  8. R. A. Holt, J. Nucl. Mater., 35 (1970) 322 https://doi.org/10.1016/0022-3115(70)90216-3
  9. Z. Nishiyama, 'Martensite Transformation'. Academic Press, New York, (1978) 6
  10. D. A. Porter and K. E. Resterling, Phase Transformation in Materials, (1997) 424
  11. Y. H. Jeong, K. O. Lee and H. G. Kim, J. Nucl. Mat., 302 (2002) 9
  12. Y. H. Jeong, H. G. Kim and T. H. Kim, J. Nucl. Mat., 317 (2003) 1
  13. H. G. Kim, Y. H. Jeong and T. H. Kim, J. Nucl. Mat., 326 (2004) 125 https://doi.org/10.1016/j.jnucmat.2004.01.015