TFT(Two-Facing-Targets) 스퍼터장치에 의해 증착된 (TiAl)N 박막의 상변태에 관한 연구

A Study on the Phase Transformations of (TiAl)N Films Deposited by TFT Sputtering System

  • 한창석 (호서대학교 산학협력육성사업단)
  • Han, Chang-Suk (Fostering Project Corps of Industrial-Academic Cooperation, Hoseo University)
  • 투고 : 2005.08.11
  • 심사 : 2005.09.27
  • 발행 : 2005.09.30

초록

Titanium aluminium nitride((TiAl)N) film is anticipated as an advanced coating film with wear resistance used for drills, bites etc. and with corrosion resistance at a high temperature. In this study, (TiAl)N thin films were deposited both at room temperature and at elevated substrate temperatures of 573 to 773 K by using a two-facing-targets type DC sputtering system in a mixture Ar and $N_2$ gases. Atomic compositions of the binary Ti-Al alloy target is Al-rich (25Ti-75Al (atm%)). Process parameters such as precursor volume %, substrate temperature and Ar/$N_2$ gas ratio were optimized. The crystallization processes and phase transformations of (TiAl)N thin films were investigated by X-ray diffraction, field-emission scanning electron microscopy. The microhardness of (TiAl)N thin films were measured by a dynamic hardness tester. The films obtained with Ar/$N_2$ gas ratio of 1:3 and at 673 K substrate temperature showed the highest microhardness of $H_v$ 810. The crystallized and phase transformations of (TiAl)N thin films were $Ti_2AlN+AlN{\rightarrow}TiN+AlN$ for Ar/$N_2$ gas ratio of 1:3, $Ti_2AlN+AlN{\rightarrow}TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 1:1 and $TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN{\rightarrow}Ti_2AlN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 3:1. The above results are discussed in terms of crystallized phases and microhardness.

키워드

참고문헌

  1. Frank. H. W. Loffler : Surface Coatings Tech., 68-69 (1994) 729
  2. Chi-To Huang, Jeng-G. Duh : Surface Coatings Tech., 71 (1995) 259
  3. W. D. Munz, T. Hurkmans, G. Keiren and T. Trinh: J. Vac. Sci. Tech., A11(5) (1993) 2583
  4. O. Knotek, W. D. Munz and T. Leyendecker : J. Vac. Sci. Tech., A5 (1987) 2173
  5. H. G. Prengel, A. T. Santhanam, R. M. Penich, P. C. Jindal and K H. Wendt: Surface Coatings Tech., 94-95 (1997) 597
  6. A. Raveh, M. Weiss, M. Pinkas, D. Z. Rosen and G. Kimmel: Surface Coatings Tech., 114 (1999) 269 https://doi.org/10.1016/S0257-8972(99)00054-7
  7. G. B. Marchwicka, L. K Stepniewska and W. Posadowski : Thin Solid Films, 82 (1981) 313 https://doi.org/10.1016/0040-6090(81)90474-0
  8. O. Knotek, W. Bosch and T. Leyendecker : J. Vac. Sci. Tech., A4 (1986) 2695
  9. W. D. Munz : J. Vac. Sci. Tech., A4 (1986) 2717
  10. H. A. Jehn, S. Hofmann, V. E. Ruckbom and W. D. Munz : J. Vac. Sci. Tech., A4 (1986) 2701
  11. L. A. Donahue, J. Cawley and J. S. Brooks: Surface Coatings Tech., 72 (1995) 128 https://doi.org/10.1016/0257-8972(94)02342-5
  12. H. A. Jehn, F. Thiergarten, H. Ebersbacb and D. Fabian : Surface Coatings Tech., 50 (1994) 45
  13. C. Rebholz, A. Leyland and A. Mattews : Thin Solid Films, 343-344 (1999) 242
  14. Sang-H. Lee, Hoo-J, Ryoo and jung-J. Lee: J. Vac. Sci. Tech., A12(4) (1994) 1602
  15. D. E. Mencer, Jr., T. R. Hess and T. Mebrahtu : J. Vac. Sci. Tech., A9(3) (1990) 1610
  16. L. Stals, K-T. Rie, D. C. Schram and G. K Wolf : Proc. of the 4th International Conf. on Plasma Surface Eng., Garmisch Partenkirchen, September, (1995)
  17. R. Komanduri : Int. J. Refrat. Met. Hard Mater., 8 (1989) 125
  18. Joo-S, Yoon, Hyung-J. Kim, Jeon-G. Han and Keon Song: J. Kor. Inst. Met. & Mater. 34, 2 (1996) 192
  19. Joo-S. Yoon, Jeon-G. Han and Jun-H. Hahn: J. Kor. Inst. Met. & Mater. 38, 3 (2000) 495
  20. C. H. Baeg, Y. G. Park and M. Y. Wey : J. Kor. Inst. Met. & Mater. 40, 9 (2002) 984
  21. C. S. Han and O. Nittono ; J. Kor. Inst. Met. & Mater. 39, 3 (2001) 253
  22. W. C. Oliver and G. M. Pharr : J. Mater. Res., 7, 6 (1992) 1564 https://doi.org/10.1557/JMR.1992.1564
  23. W. Ieitschko, H. Nowotny and F. Benesovsky ; Monatsh. Chem. 94 (1963) 1198 https://doi.org/10.1007/BF00905710