Zn-15%Al 합금의 가공연화 거동

Work Softening Behavior of Zn-15%Al alloy

  • 전중환 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 성기덕 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 김정민 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 김기태 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 정운재 (한국생산기술연구원 신소재본부 경량소재팀)
  • Jun, Joong-Hwan (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology) ;
  • Seong, Ki-Duk (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology) ;
  • Kim, Jeong-Min (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology) ;
  • Kim, Ki-Tae (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology) ;
  • Jung, Woon-Jae (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
  • 투고 : 2004.11.15
  • 심사 : 2004.12.17
  • 발행 : 2005.01.30

초록

Effect of cold rolling on microstructural changes has been investigated for a Zn-15%Al alloy to elucidate the reason for its work softening behavior. Fully annealed microstructure of the Zn-15%Al alloy is characterized by ${\eta}$ grains and (${\eta}+{\alpha}$) lamellar colonies, where ${\eta}$ and ${\alpha}$ are Zn-rich HCP and Al-rich FCC phases, respectively. The hardness decreases continuously with increasing cold rolling degree, exhibiting work softening behavior. It is revealed that during the cold rolling, (${\eta}+{\alpha}$) lamellar colonies gradually change into equiaxed ${\eta}$ and ${\alpha}$ grains due to dynamic recrystallization at room temperature, while pre-existing ${\eta}$ grains are only deformed without recrystallization. Furthermore, cold rolling causes the precipitation of dissolved Al solutes in ${\eta}$ grains. In view of these results, change of (${\eta}+{\alpha}$) phases from lamellar to equiaxed morphology, which results in structural softness and increase in equiaxed ${\eta}/{\alpha}$ grain boundaries with higher mobility, and deterioration of solution hardening by precipitation of Al solutes from ${\eta}$ grains, are thought to contribute to the work softening of Zn-15%Al alloy.

키워드

참고문헌

  1. M. Knepper and J. Spriestersbach, Proc. ITSC Shanghai 1997 : Surface Engineering towards the 21th, edited by X. Binishi et al., China Machine Press, 1997, p. 384
  2. S. Yamamoto, T. Sakaguchi and T. Uda, J. Japan Inst. Met., 3 (1996) 247
  3. S. Yamamoto, T. Uda and J. Imahori, J. Japan Inst. Met., 3 (1996) 254
  4. Y. H. Zhu, H. C. Man and W. B. Lee, Mater. Sci. Eng. A, A268 (1999) 147
  5. T. Kurosawa, T. Otani and K. Hoshino, J. de Physique IV, 6 (1996) C8-309
  6. G. Purcek, B. S. Altan, I. Miskioglu and P. H. Ooi, J. Mater. Proc. Tech., 148 (2004) 279 https://doi.org/10.1016/j.jmatprotec.2004.02.010
  7. M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, Mater. Sci. Eng. A, A241 (1998) 122
  8. T. Tanaka, K. Makii, A. Kushibe, M. Kohzu and K. Higashi, Scripta Mater., 49 (2003) 361 https://doi.org/10.1016/S1359-6462(03)00328-2
  9. E. O. Hall, Proc. Phys. Soc., B64 (1951) 747
  10. N. J. Petch, J. Iron Steel Inst., 174 (1953) 25
  11. Z. Ma, F. Han, J. Wei and J. Gao, Metall. Mater. Trans. A, 32A (2001) 2657
  12. I. G. Ritchie, Z. L. Pan and F. E. Goodman, Metall. Trans. A, 22A (1991) 617
  13. P. Yavari and T. G. Langdon, Mater. Sci. Eng., 57 (1983) 55 https://doi.org/10.1016/0025-5416(83)90027-7
  14. P. Shariat, R. B. Vastava and T. G. Langdon, Acta Metall., 30 (1982) 285 https://doi.org/10.1016/0001-6160(82)90068-2
  15. I. G. Ritchie and Z. L. Pan, Metall. Trans. A, 22A (1991) 607
  16. K. A. Padmanabhan and G. J. Davies : Superplasticity, Springer-Verlag Berlin, Heidelberg, (1980) 1