Preparation and Characterization of Solid Dispersions of Itraconazole by using Aerosol Solvent Extraction System for Improvement in Drug Solubility and Bioavailability

  • Lee, Si-Beum (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University) ;
  • Nam, Kyung-Wan (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University) ;
  • Kim, Min-Soo (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University) ;
  • Jun, Seoung-Wook (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University) ;
  • Park, Jeong-Sook (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University) ;
  • Woo, Jong-Soo (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University) ;
  • Hwang, Sung-Joo (National Research Laboratory of Pharmaceutical Technology, College of Pharmacy, Chungnam National University)
  • Published : 2005.07.01

Abstract

The objective of this study was to elucidate the feasibility to improve the solubility and bioavailability of poorly water-soluble itraconazole via solid dispersions by using supercritical fluid (SCF). Solid dispersions of itraconazole with hydrophilic polymer, HPMC 2910, were prepared by the aerosol solvent extraction system (ASES) under different process conditions of temperature/pressure. The particle size of solid dispersions ranged from 100 to 500 nm. The equilibrium solubility increased with decrease (15 to 10 MPa) in pressure and increase (40 to $60^{\circ}C$) in temperature. The solid dispersions prepared at $60^{\circ}C$/15 MPa showed a slight increase in equilibrium solubility (approximately 27-fold increase) when compared to pure itraconazole, while those prepared at $60^{\circ}C$/10MPa showed approximately 610-fold increase and no endothermic peaks corresponding to pure itraconazole were observed, indicating that itraconazole might be molecularly dispersed in HPMC 2910 in the amorphous form. The amorphous state of itraconazole was confirmed by DSC/XRD data. The pharmacokinetic parameters of the ASES-processed solid dispersions, such as $T_{max},\;C_{max},\;and\;AUC_{0-24h}$ were almost similar to $Sporanox_{\circledR}$ capsule which shows high bioavailability. Hence, it was concluded that the ASES process could be a promising technique to reduce particle size and/or prepare amorphous solid dispersion of drugs in order to improve the solubility and bioavailability of poorly water-soluble drugs.

Keywords

References

  1. Bleich, J. and Muller, B. W., Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process. J. Microencapsul., 13, 131-139 (1996) https://doi.org/10.3109/02652049609052902
  2. Bustami, R. T., Chan, H., Sweeney, T., Dehghani, F., and Foster, N. R., Generation of fine powders of recombinant human deoxyribonuclease using the aerosol solvent extraction system. Pharm. Res., 20, 2028-2035 (2003) https://doi.org/10.1023/B:PHAM.0000008053.69903.c1
  3. Colette, B. L. E., Geert, V., and Dany, T., Antifungal compositions with improved bioavailability. Patent WO 97-44014 (1997)
  4. De Beule, K. and Van Gestel, J., Pharmacology of itraconazole. Drugs, 61, 27-37 (2001)
  5. Elvassore, N., Baggio, M., Pallado, P., and Bertucco, A., Production of different morphologies of biocompatible polymeric materials by supercritical $CO_{2}$ antisolvent techniques. Biotechnol. Bioeng., 73, 449-457 (2001) https://doi.org/10.1002/bit.1079
  6. Engwicht, A., Girreser, U., and Muller, B. W., Critical properties of lactide-co-glycolide polymers for the use in microparticle preparation by the aerosol solvent extraction system. Int. J. Pharm., 185, 61-72 (1999) https://doi.org/10.1016/S0378-5173(99)00127-1
  7. Ghaderi, R., Artursson, P., and Carlfors, J., Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm. Res., 16, 676- 681 (1999) https://doi.org/10.1023/A:1018868423309
  8. Harwood, R. J., Hydroxypropylmethylcellulose, Handbook of Pharmaceutical Expients 3rd edition, American Pharmaceutical Association/The Pharmaceutical Press., p. 252-255 (2000)
  9. Jung, J. and Perrut, M., Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluid, 20, 179-219 (2001) https://doi.org/10.1016/S0896-8446(01)00064-X
  10. Jung, J. Y., Yoo, S. D., Lee, S. H., Kim, K. H., Yoon, D. S., and Lee, K. H., Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int. J. Pharm., 187, 209-218 (1999) https://doi.org/10.1016/S0378-5173(99)00191-X
  11. Kitamura, M., Yamamoto, M., Yoshinaga, Y., and Masuoka, H., Crystal size control of sulfathiazole using high pressure carbon dioxide. J. Cryst. Growth., 178, 378-386 (1997) https://doi.org/10.1016/S0022-0248(96)01190-6
  12. Kohri, N., Yamayoshi, Y., Xin, H., Iseki, K., Sato, N., Todo, S., and Miyazaki, K., Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique. J. Pharm. Phamacol., 51, 159-164 (1999) https://doi.org/10.1211/0022357991772277
  13. Kordikowski, A., Shkunov, T., and York, P., Polymorph control of sulfathizole in supercritical $CO_{2}$. Pharm. Res., 18, 682-688 (2001) https://doi.org/10.1023/A:1011045729706
  14. Leuner, C. and Dressman, J., Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm., 50, 47-60 (2000) https://doi.org/10.1016/S0939-6411(00)00076-X
  15. Marr, R. and Gamse, T., Use of supercritical fluids for different processes including new developments-a review. Chem. Eng. Proc., 39, 19-28 (2000) https://doi.org/10.1016/S0255-2701(99)00070-7
  16. Martin, T. M., Bandi, N., Shulz, R., Roberts, C. B., and Kompella, U. B., Preparation of Budesonide and Budesonide-PLA Microparticles Using Supercritical Fluid Precipitation Technology. AAPS Pharm. Sci.Teh., 3(3): article 18 (2002)
  17. Miyake, K., Irie, T., Arima, H., Hirayama, F., Uekama, K., Hirano, M., and Okamaoto, Y., Characterization of itraconazole/2- hydroxypropyl-beta-cyclodextrin inclusion complex in aqueous propyleneglycol solution. Int. J. Pharm., 179, 237-245 (1999) https://doi.org/10.1016/S0378-5173(98)00393-7
  18. Moneghini, M., Kikic, I., Voinovich, D., Perissutti, B., and Filipovic- Grcic, J., Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution. Int. J. Pharm., 222, 129-138 (2001) https://doi.org/10.1016/S0378-5173(01)00711-6
  19. Okimoto, K., Miyake, M., Ibuki, R., Yamasumura, M., Ohnish, N., and Nakai, T., Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropyl methylcellulose. Int. J. Pharm., 159, 85-93 (1997) https://doi.org/10.1016/S0378-5173(97)00274-3
  20. Palakodaty, S. and York, P., Phase behavioral effects on particle formation processes using supercritical fluids. Pharm. Res., 16, 976-985 (1997)
  21. Palakodaty, S., York, P., and Pritchard, J., Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance. Pharm. Res., 15, 1835-1843 (1998) https://doi.org/10.1023/A:1011949805156
  22. Paul, M. V., Valentine, F. V., and Roger, P. G., Beads having a core coated with an antifungal and a polymer. Patent WO 94- 05263 (1994)
  23. Randolph, T. W., Randolph, A. D., Mebes, M. and Yeung, S., Sub-micrometer-sized biodegradable particles of poly(Llactic acid) via the gas antisolvent spray precipitation process. Biotechnol. Prog., 9, 429-435 (1993) https://doi.org/10.1021/bp00022a010
  24. Shin-Etsu Catalogue, USP Hydroxypropyl Methylcellulose, 'PHARMACOAT' Film Coating Materil and Binder, No 95.9/ 1,000, Shin-Etsu Chemical Co., Ltd
  25. Stevens, D. A., Itraconazole in cyclodextrin solution. Pharmacotherapy, 19, 603-611 (1999) https://doi.org/10.1592/phco.19.8.603.31529
  26. Suzuki, H. and Sunada, H., Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem. Pharm. Bull., 46, 482-487 (1998) https://doi.org/10.1248/cpb.46.482
  27. Tom, J. W. and Debenedetti, P. G., Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions. Biotechnol. Prog., 7, 403-411 (1991) https://doi.org/10.1021/bp00011a004
  28. Uch, A. S., Hesse, U., and Dressman, J. B., Use of 1-methylpyrrolidone as a solubilizing agent for determining the uptake of poorly soluble drugs. Pharm. Res., 16, 968-671 (1999) https://doi.org/10.1023/A:1012120210530
  29. Willems, L., van der Geest, R., and de Beule, K., Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J. Clin. Pharm. Therap., 26, 159-169 (2001) https://doi.org/10.1046/j.1365-2710.2001.00338.x
  30. Woo, J. S., Antifungal oral composition containing itraconazole and process for preparing same. US Patent 6,039,981 (2000)
  31. Yeo, S. D., Debendetti, P. G., Patro, S. Y., and Przybycien, T. M., Secondary structure characterization of microparticulate insulin powders. J. Pharm. Sci., 83, 1651-1656 (1994) https://doi.org/10.1002/jps.2600831203
  32. Yoo, S. D., Lee, S. H., Kang, E., Jun, J., Jung, J. Y., Park, J. W., and Lee, K. H., Bioavailability of itraconazole in rats and rabbits after administration of tablets containing solid dispersion particles. Drug Dev. Ind. Pharm., 26, 27-34 (2000) https://doi.org/10.1081/DDC-100100324
  33. Young, T. J., Mawson, S., Johnston, K. P., Henriksen, I. B., Pace, G. W., and Mishra, A. K., Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol. Prog., 16, 402-407 (2000) https://doi.org/10.1021/bp000032q