Neuroprotective and Free Radical Scavenging Activities of Phenolic Compounds from Hovenia dulcis

  • Li, Gao (Laboratory of Immunomodulator, Korea Research Institute of Bioscience and Biotechnology, College of Pharmacy, Yanbian University) ;
  • Min, Byung-Sun (Laboratory of Immunomodulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • Zheng, Chang-Ji (Laboratory of Immunomodulator, Korea Research Institute of Bioscience and Biotechnology, College of Pharmacy, Yanbian University) ;
  • Lee, Joong-Ku (Laboratory of Immunomodulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Sei-Ryang (Laboratory of Immunomodulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Kyung-Seop (Laboratory of Immunomodulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Hyeong-Kyu (Laboratory of Immunomodulator, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2005.07.01

Abstract

The EtOAc-soluble fraction from a methanolic extract of Hovenia dulcis Thunb. exhibited neuroprotective activity against glutamate-induced neurotoxicity in mouse hippocampal HT22 cells. The neuroprotective activity-guided isolation resulted in 8 phenolic compounds (1-8), such as vanillic acid (1), ferulic acid (2), 3,5-dihydroxystilbene (3), (+)-aromadendrin (4), methyl vanillate (5), (-)-catechin (6), 2,3,4-trihydrobenzoic acid (7), and (+)-afzelechin (8). Among these, compounds 6 and 8 had a neuroprotective effect on the glutamate-induced neurotoxicity in HT22 cells. Furthermore, compound 6 had a DPPH free radical scavenging effect with an $IC_{50}$ value of $57.7{\mu}M$, and a superoxide anion radical scavenging effect with an $IC_{50}$ value of $8.0{\mu}M$. Both compounds 6 and 8 had ABTS cation radical scavenging effects with $IC_{50}$ values of $7.8{\mu}M\;and\;23.7${\mu}M$, respectively. These results suggest that compounds 6 and 8 could be neuroprotectants owing to their free radical scavenging activities.

Keywords

References

  1. Bastianetto, S., Zheng, W. H., and Quirion, R., Neuroprotective abilities of reveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br. J. Pharmcol., 131, 711-720 (2000) https://doi.org/10.1038/sj.bjp.0703626
  2. Braun, S., Liebetrau, W., Berning, B., and Behl, C., Dexamethasone- enhanced sensitivity of mouse hippocampal HT22 cells for oxidative stress is associated with the suppression of nuclear factor-B. Neurosci. Lett., 295, 101- 104 (2000) https://doi.org/10.1016/S0304-3940(00)01603-7
  3. Braca, A., Politi, M., Sanogo, R., Sanou, H., Morelli, I., Pizza, C., and Tommasi, N. D., Chemical composition and antioxidant activity of phenolic compounds from wild and cultivated Sclerocarya birrea (Anacardiaceae) leaves. J. Agric. Food Chem., 51, 6689-6695 (2003) https://doi.org/10.1021/jf030374m
  4. Cho, J. Y., Moon, J. H., Eun, J. B., Chung, S. J., and Park, K. H., Isolation and characterization of 3(Z)-dodecenedioic acid as an antibacterial substance from Hovenia dulcis THUNB. Food Sci. Biotechnol., 13, 46-50 (2004)
  5. Cho, J. Y., Moon, J. H., and Park, K. H., Isolation and identification of 3-methoxy-4-hydroxybenzoic acid and 3- methoxy-4-hydroxycinnamic acid from hot water extracts of Hovenia dulcis Thunb. and confirmation of their antioxidative and antimicrobial activity. Korean J. Food Sci. Technol., 32, 1403-1408 (2000)
  6. Drewes, S. D., Taylor, C. W., and Cunningham, A. B., (+)- Afzelechin 3-rhamnoside from Cassipourea gerrardii. Phytochemistry, 31, 1073-1075 (1992) https://doi.org/10.1016/0031-9422(92)80083-Q
  7. Hase, K., Ohsugi, M., Basnet, P., Kadota, S., and Namba, T., Effect of Hovenia dulcis Thunb. on lipopolysaccharideinduced liver injury chromic alcohol-fed rats. J. Trad. Med., 14, 28-33 (1997a)
  8. Hase, K., Ohsugi, M., Xiong, Q., Basnet, P., Kadota, S., and Namba, T., Hepatoprotective effect of Hovenia dulcis Thunb. on experimental liver injuries induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide. Biol. Pharm. Bull., 20, 381-385 (1997b) https://doi.org/10.1248/bpb.20.381
  9. Inanami, O., Watanabe, Y., Syuto, B., Nakano, M., Tsuji, M., and Kuwabara, M., Oral administration of (-)catechin protects against ischemia-reperfusion-induced neuronal death in the Gerbil. Free Rad. Res., 29, 359-365 (1998) https://doi.org/10.1080/10715769800300401
  10. Ishige, K., Schubert, D., and Sagara, Y., Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 30, 433-446 (2001) https://doi.org/10.1016/S0891-5849(00)00498-6
  11. Ji, Y., Chen, S., Zhang, K., and Wang, W., Effects of Hovenia dulcis Thunb. on blood sugar and hepatic glycogen in diabetic mice. Zhong Yao Cai, 25, 190-191 (2002)
  12. Ji, Y., Li, J., and Yang, P., Effects of fruits of Hovenia dulcis Thunb. on acute alcohol toxicity in mice. Zhong Yao Cai, 24, 126-128 (2001)
  13. Kenney, L. M., Saul, L. R., Sefecka, R., and Stevens, D. A., Hodulcin: selective sweetness-reducing principle from Hovenia dulcis leaves. Chem. Senses, 13, 529-543 (1988) https://doi.org/10.1093/chemse/13.4.529
  14. Kim, J. P., Kim, B. K., Yun, B. S., Ryoo, I. J., Lee, C, H., Lee, I, K., Kim, W. G., Lee, S., Pyun, Y. R., and Yoo, I. D., Melanocins A, B, and C, new melanin synthesis inhibitors produced by Eupenicillium shearii(I): taxonomy, fermentation, isolation and biological properties. J. Antibiot., 56, 993-999 (2003) https://doi.org/10.7164/antibiotics.56.993
  15. Kim, K. H., Chung, Y. T., Lee, J. H., Park, Y. S., Shin, M. K., Kim, H. S., Kim, D. H., and Lee, H. Y., Hepatic detoxification activity and reduction of serum alcohol concentration of Hovenia dulcis Thunb. from Korea and China. Korean J. Medicinal Crop Sci., 8, 225-233 (2000)
  16. Kim-Han, J. S. and Sun, A. Y., Protection of PC12 cells by glutathione peroxidase in L-dopa-induced cytotoxicity. Free Radic. Biol. Med., 25, 512-518 (1998) https://doi.org/10.1016/S0891-5849(98)00076-8
  17. Kim, O. K., Protective effects of Hovenia dulcis Thunb. on hepatotoxicity in carbon tetrachloride intoxicated rats. J. Korean Soc. Food Sci. Nutr., 30, 1260-1265 (2001)
  18. Kiyoshi, S., Effect of water extracts of crude drugs in decreasing blood alcohol concentrations in rats. Chem. Pharm. Bull., 35, 4597-4604 (1987) https://doi.org/10.1248/cpb.35.4597
  19. Kolodny, D. E. and Kenney, L. M., A model system for receptor cell studies with the taste modifier, hodulcin. Chem. Senses, 13, 545-558 (1988) https://doi.org/10.1093/chemse/13.4.545
  20. Mosmann T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55-63 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  21. Okuma, Y., Ishikawa, H., Ito, Y., Hayashi, Y., Endo, A., and Watanabe, T., Effects of extracts from Hovenia dulcis Thunb. on alcohol concentration in rats and men administered alcohol. Jpn. Nutr. Crop Sci. Bull., 48, 167-172 (1995)
  22. Quideau, S., Pouysegu, L., Oxoby, M., and Looney, M. A., 2- Alkoxyarenol-derived orthoquinols in carbon-oxygen, carbonnitrogen and carbon.carbon bond-forming reactions. Tetrahedron, 57, 319-329 (2001) https://doi.org/10.1016/S0040-4020(00)00939-X
  23. Saul, L. R., Kennedy, L. M., and Stevens, D. A., Selective suppression of sweetness by an extract from Hovenia dulcis leaves, Chem. Senses, 10, 445 (1985)
  24. Shen, Z. and Theander, O., Flavonoid glycosides from needles of Pinus massoniana. Phytochemistry, 24, 155-158 (1985) https://doi.org/10.1016/S0031-9422(00)80826-2
  25. Takahashi, H., Li, S., Harigaya, Y., and Onda, M., Hetercycles. XXII. Stereoselective synthesis of (+)-aromadendrin trimethyl ether and its enantiomer, and their reduction. Chem. Pharm. Bull., 36, 1877-1881 (1988) https://doi.org/10.1248/cpb.36.1877
  26. Wan, S. B. and Chan T. H., Enantioselective synthesis of afzelechin and epiafzelechin. Tetrahedron, 60, 8207-8211 (2004) https://doi.org/10.1016/j.tet.2004.06.113
  27. Watanabe, M., Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J. Agric. Food Chem. 46, 839-845 (1998) https://doi.org/10.1021/jf9707546
  28. Wollenweber, E., Stevens, J. F., Dorr, M., and Rozefelds, A. C., Taxonomic significance of flavonoid variation in temperate species of Nothofagus. Phytochemistry, 62, 1125-1131 (2003) https://doi.org/10.1016/S0031-9422(02)00666-0
  29. Xu, B. J., Deng, Y. Q., Jia, X. Q., Lee, J. H., Mo, E. K., Kang, H. J., and Sung, C. K., A rapid screening for alcohol detoxification constituents of Hovenia dulcis by microplate reader. Agric. Chem. Biotechnol., 46, 105-109 (2003)
  30. Yoshikawa, M., Murakami, T., Ueda, T., Yoshizumi, S., Ninomiya, K., Murakami, N., Matsuda, H., Saito, M., Fujii, W., Tanaka, T., and Yamahara, J., Bioactive constituents of Chinese natural medicines. III. Absolute stereostructures of new dihydroflavonols, hovenitin I, II, and III, isolated from Hovenia Semen Seu Fructus, the seed and fruit of Hovenia dulcis Thunb. (Rhamnaceae): Inhibitory effect on alcoholinduced muscular relaxation and hepatoprotective activity. Yakugaku Zasshi, 117, 108-118 (1997) https://doi.org/10.1248/yakushi1947.117.2_108
  31. Yoshikawa, K., Nagai, Y., Yoshida, M., and Arihara, S., Antisweet natural products. VIII. Structures of hodulosides VI-X from Hovenia dulcis Thunb., var. tomentella Makino.. Chem. Pharm. Bull., 41, 1722-1725 (1993) https://doi.org/10.1248/cpb.41.1722
  32. Yoshikawa, K., Tumura, S., Yamada, K., and Arihara, S., Antisweet natural products. VII. Hodulosides I, II, III, IV, and V from the leaves of Hovenia dulcis Thunb. Chem. Pharm. Bull., 40, 2287-2291 (1992) https://doi.org/10.1248/cpb.40.2287
  33. Yun, B. S., Lee, I. K., Kim, J. P., Yoo, I. D., Curtisians A-D, new free radical scavengers from the mushroom Paxillus curtisii. J. Antibiot., 53, 114-122 (2000) https://doi.org/10.7164/antibiotics.53.114