Microstructural Change of Implant Surface conditioned with Tetracycline-HCI;SLA and TB surface implant

표면처리 시간에 따른 임플란트 미세구조의 변화;SLA와 TB 표면 임플란트

  • 우정아 (경희대학교 치과대학 치주과학교실) ;
  • 허익 (경희대학교 치과대학 치주과학교실) ;
  • 권영혁 (경희대학교 치과대학 치주과학교실) ;
  • 박준봉 (경희대학교 치과대학 치주과학교실) ;
  • 정종혁 (경희대학교 치과대학 치주과학교실)
  • Published : 2005.12.31

Abstract

Mechanical and chemical methods are the two ways to treat the implant surfaces. By using mechanical method, it is difficult to eliminate bacteria and by-products from the rough implant surface and it can also cause the structural change to the implant surface. Therefore, chemical method is widely used in order to preserve and detoxicate the implant surface more effectively. The purpose of this study is to evaluate the effect of tetracylcline- HCl on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and $TiO_2blasted$ surface were used in this study. Implant surface was rubbed with sponge soaked in 50mg/ml tetracycline - HCl solution for $\frac{1}{2}$ min., 1min., $1\frac{1}{2}$ min., 2 min., and $2\frac{1}{2}min.$ respectively in the test group and with no treatment in the control group. The sponge was soaked in every 30 seconds. Then, the specimens were processed for scanning electron microscopic observation. Based upon the analysis of photographs by three dentists who are not related with this study, the results were obtained as follows; 1. In the pure titanium machined surfaces, the control specimen showed a more or less rough machined surface composed of alternating positive and negative lines corresponding to grooves and ridges. After treatment, machining line was more pronounced for the control specimens. but in general, test specimens were similar to control. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. Subsequently, the acid-etching process created the micro roughness, which thus was superimposed on the macro roughness. Irrespective of the application time of 50mg/ml tetracycline - HCl solution, in general, test specimens were similar to control. 3. In the $TiO_2blasted$ surfaces, the control specimen showed the rough surface With small pits. The irregularity of the $TiO_2blasted$ surfaces with 50mg/ml tetracycline - HCl solution was lessened and the flattened areas got wider after 1 minute.

Keywords

References

  1. Sbordone L, Barone A, Ramaglia L, Ciaglia RN, Iacono V. Antimicrobial susceptibility of periodontopathic bacteria associated with failing implants. J Periodontol 1995 :66:69-74 https://doi.org/10.1902/jop.1995.66.1.69
  2. Brånemark PI. Hansson BO, Adell R, Breine U. Lindstrom J, Hallen O. Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-years period. Scand J Plast Recontr Surg 1977: 11 (suppl. 16):1-132 https://doi.org/10.3109/02844317709025488
  3. Schroeder A. van der Zypen E, Stich H. Sutter F. The reaction of bone. connective tissue and epithelium to endosteal implants with sprayed titanium surfaces. J Maxillofac Surg 1981: 9: 15-25 https://doi.org/10.1016/S0301-0503(81)80007-0
  4. Cochran DL. The scientific basis for and clinical experiences with Straumann implants including the ITI Dental Implant System: a consensus report. Clin Oral Impl Res 2000: 11(Suppl.1): 33-58 https://doi.org/10.1034/j.1600-0501.2000.011S1033.x
  5. Zablotsky M, Diedrich D, Meffert R. Detoxification of the endotoxin-contami-nated titanium and hydroxyapatitecoated surfaces utilizing various chemotherapeutic and mechanical modalities. Implant Dent 1992: 1: 154-158 https://doi.org/10.1097/00008505-199205000-00009
  6. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Brånemark system. Clin Oral Implants Res 1992:3:104-111 https://doi.org/10.1034/j.1600-0501.1992.030302.x
  7. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. Clin. Oral Implants Res 1996:7:143-152 https://doi.org/10.1034/j.1600-0501.1996.070208.x
  8. Mombelli A. Van Oosten MAC, Schürch EJ, Lang NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987:2: 145-151 https://doi.org/10.1111/j.1399-302X.1987.tb00298.x
  9. Hickey JS. O'Neal RB, Scheidt MJ, Strong SL, Yurgeon D, Van Dyke TE. Microbiologic characterization of ligature-induced peri-implantitis in the microswine model. J Periodontol 1991: 62: 548-553 https://doi.org/10.1902/jop.1991.62.9.548
  10. Berglundh T, Lindhe J, Jonsson K, Ericsson I. The topography of the vascular systems in the periodontal and peri-implant tissues in the dog. J Clin Periodontol 1994: 21: 189-193 https://doi.org/10.1111/j.1600-051X.1994.tb00302.x
  11. Ericsson I. Berglundh T, Marinello C, Liljenberg B, Lindhe J. Long-standing plaque and gingivitis at implants and teeth in the dog. Clin Oral Implants Res. 1992: 3: 99-103 https://doi.org/10.1034/j.1600-0501.1992.030301.x
  12. Lindhe J, Berglundh T, Ericsson L, Liljenberg B, Marinello CP. Experimental breakdown of periimplant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 1992:3:9 -16 https://doi.org/10.1034/j.1600-0501.1992.030102.x
  13. Chairay JP, Boulekbache H, Jean A, Soyer A, Bouchard P. Scanning electron microscopic evaluation of the effects of an air-abrasive system on dental implants: A comparative in vitro study between machined and plasma-sprayed titanium surfaces. J Periodontol 1997:68 : 1215-1222 https://doi.org/10.1902/jop.1997.68.12.1215
  14. Meffert RM. How to treat ailing and failing implants. Implant Dent 1992:1: 25-33 https://doi.org/10.1097/00008505-199200110-00003
  15. Rapley JW, Swan RH, Hallmon WW, Mills MP. The surface characteristics produced by various oral hygiene instruments and materials on titanium implant abutments. Int J Oral Maxillofac Implants 1990:5:47-52
  16. Mellonig JT, Griffiths G. Mathys E, Spitznagel J. Treatment of the failing implant : A case reports. Int J Periodont Rest Dent 1995: 15:385-395
  17. Baron M, Haas R, Dörtbudak O, Watzek G. Experimental induced peri-implantitis: a review of different treatment methods described in the literature. Int J Oral Maxillofac Implants 2000: 15:533-544
  18. Jovanovic SA, Kenney EB, Carranza EA, Donath K. The regenerative potential of plaque induced peri-implant bone defects treated by a submerged membrane technique: an experimental study. Int J Oral Maxillofac Implants 1993:8: 13-18
  19. Persson LG, Ericsson I. Berglundh T. Lindhe J. Guided bone regeneration in the treatment of periimplantitis. Clin Oral Implants Res 1996:7:366-372 https://doi.org/10.1034/j.1600-0501.1996.070410.x
  20. Singh CO, O'Neal RB, Brennan WA, Strong SL, Horner JA, van Dyke TE. Surgical treatment of induced periimplantitis in the micro pig: Clinical and histological analysis. J Periodontol 1993:64:984-989 https://doi.org/10.1902/jop.1993.64.10.984
  21. Parham PL, Cobb CM, French AA, Love JW. Drisko CL, Killoy WJ. Effects of an air-powder abrasive system on plasmasprayed titanium implant surfaces : an in vitro evaluation. J Oral Implantol 1989: 15:78-86
  22. Bowers KT. Keller JC. Optimization of surface micromorphology for enhanced osteoblast in vitro. Int J Oral Maxillofac Implants 1992:7:302-310
  23. Meffert RM. Periodontitis vs. periimplantitis: The same disease? The same treatment? Crit Rev Oral Biol Med 1996: 7: 278-291 https://doi.org/10.1177/10454411960070030501
  24. Thomson-Neal D. Evans G. Meffert R. Effect of various prophylactic treatments on titanium. sapphire, and hydroxyapatite-coated implants : an SEM study. Int J Periodont Rest Dent 1989:9: 301-311
  25. Hürzeler MB, Quinones CR. Morrison EC. Caffesse RG. Treatment of periimplantitis using guided bone regeneration and bone grafts, alone or in combination, in beagle dogs. part I : clinical findings and histologic observations. Int J Oral Maxillofac Implants 1995; 10: 474-484
  26. Hürzeler ME, Quinones CR. Schüpbach P, Morrison EC, Caffesse RG. Treatment of peri-implantitis using guided bone regeneration and bone grafts, alone or in combination, in beagle dogs. part II: histologic finding. Int J Oral Maxillofac Implants 1997:12:168-175
  27. Wetzel AC, Vlassis J. Caffesse RG, Hammerle CH, Lang NP. Attempts to obtain reosseointegration following experimental peri-implantitis in dogs. Clin Oral Implants Res 1999:10:111-119. https://doi.org/10.1034/j.1600-0501.1999.100205.x
  28. Wielder R. Newman H, Strahan J. Stannous fluoride and subgingival chlorhexidine irrigation in the control of plaque and chronic periodontitis. J Clin Periodontol 1983:10:172-181 https://doi.org/10.1111/j.1600-051X.1983.tb02205.x
  29. Dennison DK. Huerzeler ME, Quinones C, Caffesse RG. Contaminated Implant Surfaces: an In vitro comparison of implant surface coating and treatment modalities for decontamination. J Periodontol 1994:65:942-948 https://doi.org/10.1902/jop.1994.65.10.942
  30. Meffert RM. Langer B. Fritz :ME. Dental implants: a review. J Periodontol 1992: 63:859-870 https://doi.org/10.1902/jop.1992.63.11.859
  31. Muller E. Gonzaliz YM. Andreana S. Treatment of peri-implantitis: longitudinal clinical and microbiological findings- a case report. Implant Dent 1999 :8:247-254 https://doi.org/10.1097/00008505-199903000-00006
  32. Persson LG. Ericsson I. Berglundh T. Lindhe J. Guided bone regeneration in the treatment of periimplantitis and replacement of implant components. An experimental study in the dog. J Clin Periodontol 2001 ;28: 258-263 https://doi.org/10.1034/j.1600-051x.2001.028003258.x
  33. Wittrig EE. Zablotsky MH. Layman RM. Fibroblastic growth and attachment on hydroxyapatite-coated titanium surfaces following the use of various detoxification modalities: Part I. Non-contaminated hydroxyapatite. Implant Dent 1992: 1: 189-194 https://doi.org/10.1097/00008505-199200130-00005
  34. Ivanoff CJ. Hallgren C. Widmark G. Sennerby L. Wennerberg A. Histological evaluation of the bone intergration of $TiO_2$ blasted and turned titanium micro-implants in humans. Clin Oral Implants Res 2001: 12: 128-134 https://doi.org/10.1034/j.1600-0501.2001.012002128.x
  35. Carranza FA, Takei HH. Newman MG. Clin. periodontology. Sauders com. 2002 ; 9th ed.: 882-904
  36. Scacchi M. Merz BR. Schar AR. The development of the ITI dental implant system. Clin Oral Impl Res 2000; 11 (suppl. 1):22-32. https://doi.org/10.1034/j.1600-0501.2000.011S1022.x
  37. Zablotsky M, Diedrich D. Meffert R. Wittrig E. Detoxification of the endotoxin infected hydroxyapatite coated implant surface. Int J Oral Impl 1991: 8 (2) :45-50
  38. Schou S. Holmstrup P. Jorgensen T. Skovgaard LT. Stoltze K. Hansens EH. Wenzel A. Implant surface preparation in the surgical treatment of experimental peri-implantitis with autogenous bone graft and e-PTFE membrane in cynomolgus minkeys. Clin Oral Impl Res 2003:14:412-422 https://doi.org/10.1034/j.1600-0501.2003.00912.x
  39. Augthun M. Tinschert J. Huber A. In vitro studies on the effect of cleaning methods on different implant surfaces. J Periodontol 1998: 69: 857-864 https://doi.org/10.1902/jop.1998.69.8.857
  40. Bouchard P. Nilveus R. Etienne D. Clinical Evaluation of Tetracycline HCl Conditioning in the Treatment of Gingival Recessions. A Comparative study. J Periodontol 1997;68:262-269 https://doi.org/10.1902/jop.1997.68.3.262
  41. Slots J. Lisgarten A. Bacteriodes gingivalis, Bacteriodes intermedius. and Actinobacillus actinomycetemcomitance in human periodontal disease. J Clin Periodontol 1988: 15:85-93 https://doi.org/10.1111/j.1600-051X.1988.tb00999.x
  42. van Winkelhoff AJ. van steenbergen TMJ. de Graaf J. The role of blackpigmented bacteroides in human oral infection. J Clin Periodontol 1988;15: 145-155 https://doi.org/10.1111/j.1600-051X.1988.tb01561.x
  43. Dzink JL. Socransky SS. Haffajee AD. The predominant cultativable micobiota of active and inactive lesions of destructive periodontal disease. J Clin Periodontol 1988: 15: 316-323 https://doi.org/10.1111/j.1600-051X.1988.tb01590.x
  44. Haas R. Dörtbudak O. Mensdorff-Pouilly N. Mailath G. Elimination of bacteria on different implant surfaces through photosensitization and soft laser. An in vitro study. J Clin Periodontol 1997:8:249-254
  45. Baker P. Evans R. Coburn R. Genco R. Tetracycline and its derivatives strongly bind to and are released from tooth surface in active form. J Periodontol 1983:54:580-585 https://doi.org/10.1902/jop.1983.54.10.580
  46. Glaub LM. Lee HM, Lehrer G. Nemiroff A, McNamara TF. Kaplan R. Ramamurthy NS. Minocycline reduces gingival collagenolytic activity during diabetes. J Periodontal Res 1983: 18:516-526 https://doi.org/10.1111/j.1600-0765.1983.tb00388.x
  47. Al-Ali W. Bissada NF, Greenwell H. The effect of local doxycycline with and without tricalcium phosphate on the regenerative healing potential of periodontal osseous defects in dogs. J Periodontol 1989: 60: 582-590 https://doi.org/10.1902/jop.1989.60.10.582
  48. Pepelassi EM, Bissada NF, Greenwell H, Farah CF. Doxycycline-tricalcium phosphate composite graft facilitates osseous healing in advanced periodontal furcation defects. J Periodontol 1991:62: 106-115 https://doi.org/10.1902/jop.1991.62.2.106
  49. Somerman MJ, Foster RA, Vorsteg G, Progebin K, Wynn RL. Effects of minocycline on fibroblast attachment and spreading. J Periodontol 1988:23: 154-159 https://doi.org/10.1111/j.1600-0765.1988.tb01349.x
  50. 김우영, 이만섭, 권영혁, 박준봉, 허익. 염산테트라싸이클린의 적용시간에 따른 임플란트 표면 변화에 관한 주사전사현미경적 연구. 대한치주과학회지 2002: 32: 523-538