Evaluation of deproteinized bovine bone mineral as a bone graft substitute;A comparative analysis of basic characteristics of three commercially available bone substitutes

탈단백 우골의 골이식 대체재로서의 특성에 대한 평가;세 종류의 골 대체재의 기본 특성에 대한 비교분석

  • Park, Jin-Woo (Department of Periodontology, College of Dentistry, Kyungpook National University)
  • 박진우 (경북대학교 치과대학 치주과학교실)
  • Published : 2005.12.31

Abstract

Bovine bone-derived bone substitutes are widely used for treatment of bone defects in dental and orthopedic regenerative surgery. The purpose of this study was to evaluate the basic characteristics of deproteinized bovine bone mineral as a bone graft substitute. Commercially available products from three different bovine bone minerals-Bio-Oss(GeistlichPharma, Switzerland), BBP(Oscotec. Korea), Osteograf/N-300(Dentsply Friadent Ceramed, USA) - were investigated. They were evaluated by scanning electron microscopy(SEM), energy dispersive X-ray spectrometer(EDS), surface area analysis(BET), and Kjeldahl protein analysis. Cell viability on different products was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay. The results of this study indicated that each bone substitute displayed distinct surface properties. Furthermore, Kjeldahl protein analysis indicated that residual crude proteins are present in deproteinized bovine bone mineral. BBP showed relatively large amount of residual protein, which indicated that the possibility of disease transmission can not be safely ruled out. Based on the results of this study, it is suggested that active quality management is strongly needed in operations that involve processing bovine bone tissue for medical use.

Keywords

References

  1. Kalk WWI, Raghoebar GM, Jansma J, Boering G. Morbidity from iliac crest bone harvesting. Clin Oral Implants Res 1996:54:1424-1429
  2. Misch CM. Comparision of intraoral donor sites for onlay grafting prior to implant placement. Int J Oral Maxillofac Implants 1997: 12:767-776
  3. Raghoebar R, Louwerse C, Kalk WWI, Vissink A. Morbidity of chin bone harvesting. Clin Oral Implants Res 2001; 12: 503-507 https://doi.org/10.1034/j.1600-0501.2001.120511.x
  4. Mellonig JT. Bone allografts in periodontal therapy. Clin Orthop 1996: 324: 116-125 https://doi.org/10.1097/00003086-199603000-00014
  5. Pinholt EM. Haanaes HR, Roervik M, Donath K, Bang G. Alveolar ridge augmentation by osteoinductive materials in goats. Scand J Dent Res 1992:100:361-365
  6. Quintero G, Mellonig JT, Gambill VM, Pelleu GB. A six month clinical evaluation of decalcified freeze-dried bone allografts in periodontal osseous defects. J Periodontol 1982:53:726-730 https://doi.org/10.1902/jop.1982.53.12.726
  7. Rosenberg E, Rose LF. Biologic and clinical consideration for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am 1998: 42:467
  8. Urist MR; Bone: formation by autoinduction. Science 1965: 150: 893-899 https://doi.org/10.1126/science.150.3698.893
  9. Quattlebaum JB, Mellonig JT, Hensel NF. Antigenicity of freeze-dried cortical bone allograft in human periodontal defects. J Periodontol 1988:59:394-397 https://doi.org/10.1902/jop.1988.59.6.394
  10. Schwartz Z, Mellonig JT, Carnes DL, et al.. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol 1996: 67: 918-926 https://doi.org/10.1902/jop.1996.67.9.918
  11. Schwartz Z, Somers A Mellonig JT, et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependant on donor age bu not gender. J Periodontol 1998: 69: 47-478 https://doi.org/10.1902/jop.1998.69.1.47
  12. Lekishvilli MV, Snetkov A, Vasiliv MG. et al. Experimental and clinical study of the demineralized bone allografts. Cell Tissue Bank 2004:5:231-238 https://doi.org/10.1007/s10561-004-1443-y
  13. Summitt MC, Reisinger KD. Characterization of the mechanical properties of demineralized bone. J Biomed Mater Res A 2003:67:742-750
  14. Schmitt JM, Buck DC, Joh SP, Lynch SE, Hollinger JO. Comparison of porous bone mineral and biologically active glass in critical-sized defects. J Periodontol 1997: 68: 1043-1053 https://doi.org/10.1902/jop.1997.68.11.1043
  15. Heikkila JT. Aho HJ, Yli-Urpo A, Happonen RP, Aho AJ. Bone formation in rabbit cancellous bone defects filled with bioactive glass granules. Acta Orthop Scand 1995:66:463-467 https://doi.org/10.3109/17453679508995588
  16. Mangano C, Bartolucci E, Mazzocco C. A new porous hydroxyapatite for promotion of bone regeneration in maxillary sinus augmentation: clinical and histologic study in humans. Clin Oral Implants Res 2003: 18:23-30
  17. Wiltfang J, Schlegel KA, Schultze-Mosgau S, et al. Sinus floor augmentation with 베타-tricalciumphosphate($\beta$-TCP): does platelet-rich plasma promote its osseointegration and degradation? Clin Oral Implants Res 2003: 14: 213-218 https://doi.org/10.1034/j.1600-0501.2003.140212.x
  18. Papacharambous SK & Anastasoff KI. Natural coral skeleton used as onlay graft for contour augmentation on the face. Int J Oral Maxillofac Surg 1993: 22: 260-264 https://doi.org/10.1016/S0901-5027(05)80511-9
  19. Clokie CML and Sandor GKB. Bone: present and future. In: Babbush CA, editor, Dental implants: the art and science/edited by Babbush CA. W.B. Sanduers Company. Philadelphia. 2001, p. 70
  20. Froum SJ, Tarnow DP, Wallace SS, Rohrer MD, Cho SC. Sinus floor elevation using anorganic bovine bone matrix (OsteoGraf/N) with and without autogenous bone: a clinical, histologic, radiographic, and histomorphometric analysis-Part 2 of an ongoing prospective study. Int J Periodontics Restorative Dent 1998: 18:528-543
  21. John HD & Wenz B. Histomorphometric analysis of natural bone mineral for maxillary sinus augmentation. Int J Oral Maxillofac Implants 2004: 19: 199-207
  22. Landi L, Pretel RW, Hakimi NM, Setayesh R. Maxillary sinus floor elevation using a combination of DFDBA and bovine bone-derived porous hydroxyapatite: a preliminary histologic and histomorphometric report. Int J Periodontics Restorative Dent 2000:20:574-583
  23. Maiorana C, Redemagni M, Rabagliati M, Salina S. Treatment of maxillary ridge resorption by sinus augmentation with iliac cancellous bone. anorganic bovine bone. and endosseous implants: a clinical and histologic report. Int J Oral Maxillofac Implants 2000: 15: 873-878
  24. Mellonig T. Human histologic evaluation of a bovine derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent 2000:20: 18-29
  25. Hallman M, Sennerby L. Zetterqvist L. Lundgren S. A 3-year prospective follow-up study of implant-supported fixed prostheses in patients subjected to maxillary sinus floor augmentation with a 80:20 mixture of deproteinized bovine bone and autogenous bone. Clinical. radiographic and resonance frequency analysis. Int J Oral Maxillofac Surg 2005.34:273-280 https://doi.org/10.1016/j.ijom.2004.09.009
  26. Norton MR. Odell EW, Thompson ID, Cook RJ. Efficacy of bovine bone mineral for alveolar augmentation: a human histologic study. Clin Oral Implant Res 2003:14:775-783 https://doi.org/10.1046/j.0905-7161.2003.00952.x
  27. Piattelli M, Favero GF. Scarano A, Orsini G. Piattelli A. Bone reactions to anorganic bovine bone(Bio-$Oss^{\circledR}$) used in sinus lifting procedure: a histologic long-term report of 20 cases in man, Int J Oral Maxillofac Implants 1999: 14: 835-840
  28. Sartori S, Silvestri M, Forni F, et al. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone(Bio-$Oss^{\circledR}$). A case report with histomorphometric evaluation. Clin Oral Implants Res 2003: 14: 369-372 https://doi.org/10.1034/j.1600-0501.2003.140316.x
  29. Peetz M. Characterization of xenogenic bone material. In: Boyne PJ, editor. Osseous reconstruction of the maxilla and mandible. Chicago: Quintessence, 1997.p.87-93
  30. Rosen BV, Hobbs LW, Spector M. The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatite used as bone graft substitute materials. Biomaterials 2002: 23: 921-928 https://doi.org/10.1016/S0142-9612(01)00204-6
  31. Wenz B, Oesch O, Horst M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials 2001;22: 1599-1606 https://doi.org/10.1016/S0142-9612(00)00312-4
  32. Honig JF, Merten HA, Heinemann DE. Risk of transmission of agents associated with Creutzfeld-Jakob disease and bovine spongiform encephalopathy. Plast Reconstr Surg 1999; 103: 1324-1335 https://doi.org/10.1097/00006534-199904040-00041
  33. Schwartz Z, Weesner T, van Dijk S, et al. Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodontol 2000:71:1258-1269 https://doi.org/10.1902/jop.2000.71.8.1258
  34. Blomqvist JE. Alberius P. Isaksson S. Lindhe A, Obrant K. Importance of bone graft quality for implant integration after maxillary sinus reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998:86:268-274 https://doi.org/10.1016/S1079-2104(98)90170-6
  35. Merkx MAW. Maltha JC. Freihofer HP. Kuijpers-Jagtman AM. Incorporation of particulated bone implants in the facial skeleton. Biomaterials 1999: 20: 2029-2035 https://doi.org/10.1016/S0142-9612(99)00105-2
  36. Ozaki W. Buchman SR. Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryonic origin. Plast Reconstr Surg 1998:102:291-299 https://doi.org/10.1097/00006534-199808000-00001
  37. Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone(Bio-Oss) used in sinus augmentation procedure: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999:14:835-840
  38. Schlegel AK & Donath K. Bio-Oss-a resorbable bone substitutes? J Long Term Eff Med Implants 1998:8:201-209
  39. Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res 1997: 8: 117-124 https://doi.org/10.1034/j.1600-0501.1997.080206.x
  40. Hammerle CHF, Chiantella GC, Karring T, Lang NP. The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clin Oral Implants Res 1998:9 :151-162. https://doi.org/10.1034/j.1600-0501.1998.090302.x
  41. Yildirim M. Spiekermann H. Biesterfeld S, Edelhoff D. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin Oral Implants Res 2000:11:217-229 https://doi.org/10.1034/j.1600-0501.2000.011003217.x
  42. Maiorana C, Beretta M, Salina S, Santoro F. Reduction of autogenous bone graft resorption by means of Bio-Oss coverage: a prospective study. Int J Periodontics Restorative Dent 2005: 25: 19-25
  43. Hatano N. Shimizu Y, Ooya K. A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2:1 autogenous bone/xenograft mixture and simultaneous placement of dental Implants. Clin Oral Implants Res 2004: 15 :339-345 https://doi.org/10.1111/j.1600-0501.2004.00996.x
  44. Hurzeler ME. Qunones CR, Kirsch A. et al. Maxillary sinus augmentation using different grafting materials and dental implants in monkeys. Part I. Evaluation of anorganic bovine-derived bone matrix. Clin Oral Implants Res 1997:8:476-486 https://doi.org/10.1034/j.1600-0501.1997.080606.x
  45. Wenz B. Characteristics of Bio-Oss and Bio-Gide. In: Maiorana C & Simion M. editor. Advanced techniques for bone regeneration with Bio-Oss and Bio-Gide. Seoul. Daehan publishing, 2003. p.75
  46. Ewers R, Goriwoda W, Schopper C, Moser D. Spassova E. Histologic findings at augmented bone areas supplied with two different bone substitute materials combined with sinus floor lifting. Clin Oral Implants Res 2004:15:96-100 https://doi.org/10.1111/j.1600-0501.2004.00987.x
  47. Benke D, Olah A. Mohler H. Proteinchemical analysis of Bio-Oss bone substitute and evidence on its carbonate content. Biomaterials 2001:22: 1005-1012 https://doi.org/10.1016/S0142-9612(00)00323-9
  48. Public health issues related to animal and human spongiform encephalopathies : Memorandum from a WHO meeting. 1992: Bulletin of the World Health Organization. NO.70(2) 183-190
  49. Taylor DM. Fraser H, McConnell I, et al. Decontamination studies with the agents of bovine spongiform encepalopathy and scrapie. Arch Virol 1994: 139: 313-326 https://doi.org/10.1007/BF01310794
  50. Sogal A & Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontol 1999: 70: 1053-1063 https://doi.org/10.1902/jop.1999.70.9.1053
  51. Lowry OH. Rosbrough NJ. Farr AL. Randall RT. Protein measurement with the folin phenol reagent. J Biol Chem 1951: 193:265-273
  52. Brooks SPJ. Lampi BJ. Sarwar G. Botting HG. A comparison of methods for determining total body protein. Anal Biochem 1995:226:26-30 https://doi.org/10.1006/abio.1995.1186
  53. Verley H. Practical clinical biochemistry. 1965. Heinemann. London
  54. Robey PG, Boskey AL: The biochemistry of bone. In Marcus R et al, editors: Osteoporosis, New York, 1995, Academic press
  55. Wuttke M. Muller S. Nitsche DP, et al. Structural characterization of human recombinant and bone-derived bone sialoprotein. Functional implications for cell attachment and hydroxyapatite binding. J Biol Chem 2001: 276: 36839-36848 https://doi.org/10.1074/jbc.M105689200
  56. Goldberg M & Boskey AL. Lipids and biomineralizations. Prog Histochem Cytochem 1996: 31: 187