Effect of titanium surface roughness on adhesion and differentiation of osteoblasts

티타늄 표면조도가 조골세포의 부착 및 분화에 미치는 영향

  • Kim, Jung-Sik (Department of Periodontics, College of Dentistry, Kangnung National University) ;
  • Lee, Jae-Kwan (Department of Periodontics, College of Dentistry, Kangnung National University) ;
  • Ko, Sung-Hee (Department of Phamacology, College of Dentistry, Kangnung National University) ;
  • Um, Heung-Sik (Department of Periodontics, College of Dentistry, Kangnung National University) ;
  • Chang, Beom-Seok (Department of Periodontics, College of Dentistry, Kangnung National University)
  • 김정식 (강릉대학교 치과대학 치주과학교실) ;
  • 이재관 (강릉대학교 치과대학 치주과학교실) ;
  • 고성희 (강릉대학교 치과대학 약리학교실) ;
  • 엄흥식 (강릉대학교 치과대학 치주과학교실) ;
  • 장범석 (강릉대학교 치과대학 치주과학교실)
  • Published : 2005.12.31

Abstract

The success of an implant is determined by its integration into the tissue surrounding the biomaterial. Surface roughness is considered to influence the behavior of adherent cells. The aim of this in vitro study was to determine the effect of surface roughness on Saos-2 osteoblast-like cells. Titanium disks blasted with 75 ${/mu}m$ aluminum oxide particles and machined titanium disks were prepared. Saos-2 were plated on the disks at a density of 50,000 cells per well in 48-well dishes. After 1 hour, 1 day, 6 days cell numbers were counted. One day, 6 days after plating, alkaline phosphatase(ALPase) activity was determined. Compared to experimental group, the number of cells was significantly higher on control group. The stimulatory effect of surface roughness on ALPase was more pronounced on the experimental group than on control group. These results demonstrate that surface roughness alters proliferation and differentiation of osteoblasts. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells.

Keywords

References

  1. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981; 10:387-416 https://doi.org/10.1016/S0300-9785(81)80077-4
  2. Lekholm U, Gunne J, Henry P, Higuchi K, Steenberghe D. Survival of the Branemark Implant in partially edentulous jaws. A 10-year prospective multicenter study. Int J Oral Maxillofac Implants 1999; 14: 639-645
  3. Jemt T. Modified single and short span restorations supported by osseointegrated fixtures in the partially edentulous jaw. J Prosthet Dent 1986;55: 243-247 https://doi.org/10.1016/0022-3913(86)90352-5
  4. Cochran DL. A comparison of endosseous dental implant surfaces. J Periodontol 1999:70:1523-1539 https://doi.org/10.1902/jop.1999.70.12.1523
  5. Bowers KT, Keller JC, Randolph BA Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992;7:302-10
  6. Michaels CM, Keller JC, Stanford CM. Solursh M. In vitro cell attachment of osteoblast-like cells to titanium. J Dent Res 1989:68:276
  7. Boyan, BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S, Dean DD, Schwartz Z. Titanium surface roughness alters responsiveness of MG 63 oteoblast-like cells to 1$\alpha$. 25-$(OH)_2D_3$. J Biomed Mater Res 1998:39:77-85 https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L
  8. Boyan BD. Lossdorfer S. Wang L. Zhao G. Lohmann CH, Cochran DL. Schwartz Z. Osteoblasts generate an osteogenic micro-environment when grown on surfaces with rough microtopo-graphies. Eur Cell Mater 2003: 6: 22-27 https://doi.org/10.22203/eCM.v006a03
  9. Martin. JY. Schwartz Z. Hummert TW. Schraub DM. Simpson J. Lankford J Jr. Dean DD. Cochran DL. Boyan BD. Effect of titanium surface roughness on proliferation. differentiation. and protein synthesis of human osteoblast-like cells (MG63) . J Biomed Mater Res 1995 : 29: 389-401 https://doi.org/10.1002/jbm.820290314
  10. Cochran DL. Simpson J. Weber H, Buser D. Attachment and growth of periodontal cells on smooth and roughtitanium. Int J Oral Maxillofac Implants 1994: 9: 289-97
  11. Batzer R. Liu Y. Cochran DL. Szmuckler-Moncler S. Dean DD. Boyan BD. Schwartz Z. Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to 1 alpha. 25-$(OH)_2D_3$. J Biomed Mater Res 1998:41:489-96 https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<489::AID-JBM20>3.0.CO;2-C
  12. Sisk M. Lohmann CH. Cochran DL. Sylvia VL. Simpson JP. Dean DD. Boyan BD. Schwartz Z. Inhibition of cyclooxygenase by indomethacin modulates osteoblast response to titanium surface roughness in a time-dependent manner. Clin Oral Implants Res 2001: 12: 52-61 https://doi.org/10.1034/j.1600-0501.2001.012001052.x
  13. Kieswetter K, Schwartz Z. Hummert TW. Cochran DL. Simpson J. Dean DD. Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG63 cells. J Biomed Mater Res 1996: 32: 55-63 https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O
  14. Schwartz Z, Lohmann CH, Sisk M, Cochran DL, Sylvia VL, Simpson J, Dean DD, Boyan BD. Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1$\alpha$, 25-$(OH)_2D_3$ is mediated via protein kinase C- and protein kinase A-dependent pathways. Biomaterials 2001:22: 731-741 https://doi.org/10.1016/S0142-9612(00)00241-6
  15. Khosla S. Minireview. the OPG/RANKL/RANK system. Endocri-nology 2001;142: 5050-5055 https://doi.org/10.1210/en.142.12.5050
  16. Lossdorfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL, Boyan BD. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res 2004:70:361-369
  17. Brunette DM. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp Cell Res 1986: 164: 11-26 https://doi.org/10.1016/0014-4827(86)90450-7
  18. Thomas K, Cook SD. An evaluation of variables influencing implant fixation and direct bone appostition. J Biomed Mater Res 1985: 19:875-901 https://doi.org/10.1002/jbm.820190802
  19. D Buser, R K Schenk, S Steinemann, JP Fiorellini, CH Fox, H Stich. Influence of surface characteristics on bone integration of titanium implants: A histomorphometric study in miniature pigs. J Biomed Mater Res 1991: 25: 889-902 https://doi.org/10.1002/jbm.820250708
  20. L Carlsson. T Rostlund, B Albrektsson, T Albrektsson. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988:3:21-24
  21. Suzuki K, Aoki K, Ohya K. Effects of surface roughness of titanium implants on bone remodeling activity of remour in rabbits. Bone 1997:21:507-514 https://doi.org/10.1016/S8756-3282(97)00204-4
  22. Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A athematical model. J Biomech 1999:32:829-836 https://doi.org/10.1016/S0021-9290(99)00058-5
  23. A Rich, AK Harrisl. Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. J Cell Sci 1981:50: 1-7
  24. HJ Wilke, L Claes, S Steineman. The influence of various titanium surfaces on the interface shear strength between implants and bone, in Clinical Implant Materials: Advances in Biomaterials, Elsevier, Amsterdam 1990:9:309-314
  25. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants. A review of proposed criteria of success. Int J Oral Maxillofac Implants 1986: 1: 11-25
  26. Lincks J, Boyan BD, Cochran DL, Liu Y. Blanchard CR, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. J Dent Res 1998: 2219-2232
  27. Stefano G, Carlo G, Desiree M, Alessandro R, and Renato S. Different titanium surface treatment infuences human mandibular osteoblast response. J Periodontol 2004: 75: 273-282 https://doi.org/10.1902/jop.2004.75.2.273
  28. Lohmann CH. Bonewald LF. Sylvia VL. Cochran DL. Dean DD. Boyan BD. Schwartz Z. Maturation state determines the response of osteogenic cells to surface roughness and 1$\alpha$. 25-dihydroxyvitamin D3. J Bone Miner Res 2000: 15: 1169-1180 https://doi.org/10.1359/jbmr.2000.15.6.1169
  29. Schwartz Z .. Lohmann CH. Cochran DL. Sylvia VL. Dean DD. Boyan BD. Bone regulating mechanism on implant surfaces. Proceedings of the 3rd European Workshop on Periodontology. Implant Dentistry. 1999:41-54
  30. Anselme K, Bigerelle M. Noel B. Dufresne E. Hardouin P. Qualitative and quantitative study of human osteo-blast adhesion on materials with various surface roughness. J Biomed Mater Res 2000:49:155-166 https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
  31. Brugge PJ. Jansen JA. Initial interaction of rat bone marrow cells with noncoated and calcium phosphate coated titanium substrates. Biomaterials 2002: 23: 3269- 3277 https://doi.org/10.1016/S0142-9612(02)00085-6
  32. Wennerberg A, Albrektsson T. Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 1996:11:38-45
  33. Hatano K, Inoue H. Kojo T. Matsunaga T. Tsujisawa T. Uchiyama C. Uchida Y. Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone 1999: 25: 439-445 https://doi.org/10.1016/S8756-3282(99)00192-1
  34. Degasne I. Basle MF. Demais V. Hure G. Lesourd M. Grolleau B. Mercier L. Chappard D. Effects of roughness. fibronectin and vitronectin on attach-ment, spreading. and proliferation of human osteoblast-like cells(Saos-2) on titanium surfaces. Calcif Tissue Int 1999:64:499-507 https://doi.org/10.1007/s002239900640
  35. Owen TA, Aronow M. Shalhoub V. Pockwinse S. Lian JB. Stein GS. Progressive development of the rat osteoblast phenotype in vitro : reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 1990: 143:420-30 https://doi.org/10.1002/jcp.1041430304
  36. Carlo G. Stefano G. Giovanni P. Desiree M. Giovanni M. Comparison of human mandibular osteoblasts grown on two commercially available titanium implant surfaces. J Periodontol 2005:76:364-372 https://doi.org/10.1902/jop.2005.76.3.364
  37. Schwartz Z. Amir D. Boyan BD. Cochavy D. Mai CM. Swain LD. Gross U. Sela J. Effect of glass ceramic and titanium implants on primary calcification during rat tibial bone healing. Calcif Tissue Int 1991:49:359-64 https://doi.org/10.1007/BF02556260
  38. LL Hench. Paschall HA Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 1973:7:25-42 https://doi.org/10.1002/jbm.820070304
  39. M Jarcho. Kay JF. Gumaer KI. Doremus RH. Drobeck HP. Tissue. cellular and subcellular events at a bone-ceramic hydroxylaptite interface. J Bioeng 1977 :56:151-156
  40. Hakan Nygren. Pentti Tengvall, and Ingemar Lundstrom. The initial reactions of TiO2 with blood. J Biomed Mater Res 1997:34:487-492 https://doi.org/10.1002/(SICI)1097-4636(19970315)34:4<487::AID-JBM9>3.0.CO;2-G
  41. Schwartz Z. Lohmann CH. Vocke AK, Sylvia VL, Cochran DL. Dean DD, Boyan BD. Osteoblast response to titanium surface roughness and 1$\alpha$, 25-$(OH)_2D_3$ is mediated through the mito-genactivated protein kinase (MAPK) pathway. J Biomed Mater Res 2001:56: 417-426 https://doi.org/10.1002/1097-4636(20010905)56:3<417::AID-JBM1111>3.0.CO;2-K
  42. Gronowicz G, McCarthy MB. Response of huan osteoblasts to implant materials: integrin-mediated adhesion. J Orthop Res 1996: 14:878-887 https://doi.org/10.1002/jor.1100140606
  43. Sinha RK. Tuan RS. Regulation of bhuan osteoblast integrin expression by orthopedic implant materials. Bone 1996 : 18:451-457 https://doi.org/10.1016/8756-3282(96)00044-0
  44. Villareal DR. Sogal A, Ong JL. Protein adsorption and osteoblast responses to different calcium phosphate surfaces. J Oral Impl 1998:24:67-73 https://doi.org/10.1563/1548-1336(1998)024<0067:PAAORT>2.3.CO;2
  45. Cowles EA, Brailey LL, Gronowicz GA, Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J Biomed Mater Res 2000:52:725-737 https://doi.org/10.1002/1097-4636(20001215)52:4<725::AID-JBM18>3.0.CO;2-O
  46. El-Ghannam A, Starr L, Jones J. Laminin-5 coating enhances epithelial cell attachment, spreading and hemidesmosome assem bly on Ti-6Al-4V implant material in vitro. J Biomed Mater Res 1998:41:30-40 https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<30::AID-JBM4>3.0.CO;2-R
  47. Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL, Boyan DD. Effect of titanium surface roughness on chondrocyte proliferatioin, martix production, and differentiation depends on the state of cell maturationl. J Biomed Mater Res 1996:30:145-155 https://doi.org/10.1002/(SICI)1097-4636(199602)30:2<145::AID-JBM3>3.0.CO;2-R
  48. Mustafa K, Wennerberg A, Hultenby K, Lopez B, Arvidson K. Determining optimal surface roughness of $TiO_2$ blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Impl Res 2001: 12:515-525 https://doi.org/10.1034/j.1600-0501.2001.120513.x
  49. Gottlander M, Albrektsson T, Carlsson LV. A histomorphometric study of unthreaded hydroxyapatite-coated and titanium-coated implants in rabbit bone. Int J Oral Maxillofac Implants 1992:7:485-490
  50. Pioletti DP, Takei H, Kwon SY, Sung KL. The cytotoxic effect of titanium particles phagocytosed by osteoblasts. J Biomed Mater Res 1999:46:399-407 https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<399::AID-JBM13>3.0.CO;2-B