Lamellar Structured TaN Thin Films by UHV UBM Sputtering

초고진공 UBM 스퍼터링으로 제조된 라멜라 구조 TaN 박막의 연구

  • Lee G. R. (Materials Science and Engineering Department, Seoul National University) ;
  • Shin C. S. (Materials Science and Engineering Department, University of illinois at Urbana-Champaign) ;
  • Petrov I. (Materials Science and Engineering Department, University of illinois at Urbana-Champaign) ;
  • Greene J, E. (Materials Science and Engineering Department, University of illinois at Urbana-Champaign) ;
  • Lee J. J. (Materials Science and Engineering Department, Seoul National University)
  • 이기락 (서울대학교 재료공학부) ;
  • ;
  • ;
  • ;
  • 이정중 (서울대학교 재료공학부)
  • Published : 2005.04.01

Abstract

The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.

Keywords

References

  1. J.-E. Sundgren, B.-O. Johansson, A. Rockett, S. A. Barnett, J. E. Greene, in Physics and Chemistry of Protective Coatings, Edited by J. E. Greene, W. D. Sproul, and J. A. Thornton (American Institute of Physics, New York), 149 (1986) 95
  2. T. B. Massalski, in Binary Alloy Phase Diagrams, edited by T. B. Massalski (ASM International, Ohio), (1990) 2703
  3. N. Terao, Jpn. J. Appl. Phys., 10 (1971) 248 https://doi.org/10.1143/JJAP.10.248
  4. D. Gerstenberg, C. J. Calbick, J. Appl. Phys., 35 (1964) 402 https://doi.org/10.1063/1.1713324
  5. X. Sun, E. Kolawa, J.-S. Chen, J. S. Reid, M.-A. Nicolet, Thin Solid Films, 236 (1993) 347 https://doi.org/10.1016/0040-6090(93)90694-K
  6. B. Mehrotra, J. Stimmell, J. Vac. Sci. Technol. B, 5 (1987) 1736 https://doi.org/10.1116/1.583826
  7. C.-S. Shin, D. Gall, P. Desjardins, A. Vailionis, H. Kim, M. Oden, I. Petrov, J. E. Greene, Appl. Phys. Lett., 75 (1999) 3808 https://doi.org/10.1063/1.125463
  8. K. Baba, R. Hatada, K. Udoh, K. Yasuda, Nucl. Instrum. Methods Phys. Res. B, 127/128 (1997) 841 https://doi.org/10.1016/S0168-583X(97)00018-9
  9. X. Chen, H. L. Frisch, A. E. Kaloyeros, B. Arkles, J. Sullivan, J. Vac. Sci. Technol. B, 17 (1999) 182 https://doi.org/10.1116/1.590533
  10. M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, H. T. Chiu, J. Appl. Phys., 79 (1996) 6932 https://doi.org/10.1063/1.361518
  11. I. Petrov, F. Adibi, J. E. Greene, W. D. Sproul, W.-D. Munz, J. Vac. Sci. Technol., A, 10 (1992) 3283 https://doi.org/10.1116/1.577812
  12. W. C. Oliver, G. M. Pharr, J. Mater. Res., 7 (1992) 1564 https://doi.org/10.1557/JMR.1992.1564
  13. I. C. Noyan, T. C. Huang, B. R. York, Critical Reviews in Solid State and Materials Sciences, 20 (1995) 125 https://doi.org/10.1080/10408439508243733
  14. Y. W. Kim, J. Moser, I. Petrov, J. E. Greene, J. Vac. Sci. Technol. A, 12 (1994) 3169 https://doi.org/10.1116/1.579233