Refolding and Purification of Recombinant Human $Interferon-\gamma$ Expressed as Inclusion Bodies in Escherichia coli Using Size Exclusion Chromatography

  • Guan Yi-Xin (Department of Chemical and Biochemical Engineering, Zhejiang University) ;
  • Pan Hai-Xue (Department of Chemical and Biochemical Engineering, Zhejiang University) ;
  • Gao Yong-Gui (Department of Chemical and Biochemical Engineering, Zhejiang University) ;
  • Yao Shan-Jing (Department of Chemical and Biochemical Engineering, Zhejiang University) ;
  • Cho Man-Gi (Advanced Science and Technology Research Center, Graduate School of Biotechnology, Dongseo University)
  • Published : 2005.03.01

Abstract

A size exclusion chromatography (SEC) process, in the presence of denaturant in the refolding buffer was developed to refold recombinant human $interferon-\gamma$ ($rhIFN-\gamma$) at a high concentration. The $rhlFN-\gamma$ was overexpressed in E. coli resulting in the formation of inactive inclusion bodies (IBs). The IBs were first solubilized in 8 M urea as the denaturant, and then the refolding process performed by decreasing the urea concentration on the SEC column to suppress protein aggregation. The effects of the urea concentration, protein loading mode and column height during the refolding step were investigated. The combination of the buffer-exchange effect of SEC and a moderate urea concentration in the refolding buffer resulted in an efficient route for producing correctly folded $rhIFN-\gamma$, with protein recovery of $67.1\%$ and specific activity up to $1.2\times10^7\;IU/mg$.

Keywords

References

  1. Lanckriet, H. and A. P. J. Meddelberg (2004) Continuous chromatographic protein refolding. J. Chromatogr. A. 1022: 103-113 https://doi.org/10.1016/j.chroma.2003.09.013
  2. De Bernardez Clark, E. (2001) Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12: 202-207 https://doi.org/10.1016/S0958-1669(00)00200-7
  3. Lilie, H., E. Schwarz, and R. Rudolph (1998) Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 9: 497-501 https://doi.org/10.1016/S0958-1669(98)80035-9
  4. Rudolph, R. and H. Lilie (1996) In vitro folding of inclusion body proteins. FASEB J. 10: 49-56
  5. Cui, Z. F., Y. X. Guan, and S. J. Yao (2004) A temperature- sensitive hydrogel refolding system: Preparation of poly(N-isopropyl acrylamide) and its application in lysozyme refolding. Chinese J. Chem. Eng. 12: 556-560
  6. Rudlph, R., G. Bohm, H. Lilie, and R. Jaenicke (1997) In Protein Function: A Practical Approach. 2nd ed., pp. 57-99. IRL Press, Oxford, UK
  7. Park, S. J., K. Ryu, C. W. Suh, Y. G. Chai, O. B. Kwon, S. K. Park, and E. K. Lee (2002) Solid-phase refolding of poly-lysine tagged fusion protein of hEGF and angiogenin. Biotechnol. Bioprocess Eng. 7: 1-5 https://doi.org/10.1007/BF02935871
  8. Creighton, T. E. (1990) US Patent 4,977,248
  9. Fahey, E. M., J. B. Chaudhuri, and P. Binding (2000) Refolding and purification of a urokinase plasminogen activator fragment by chromatography. J. Chromatogr. B. 737: 225-235 https://doi.org/10.1016/S0378-4347(99)00360-6
  10. Rogl, H., K. Kosemund, W. Kuhlbrandt, and I. Collinson (1998) Refolding of Escherichia coli produced membrane protein inclusion bodies immobilised by nickel chelating chromatography. FEBS Letters 432: 21-26 https://doi.org/10.1016/S0014-5793(98)00825-4
  11. Geng, X. D. and X. Q. Chang (1992) High-performance hydrophobic interaction chromatography as a tool for protein refolding. J. Chromatogr. A. 599: 185-194 https://doi.org/10.1016/0021-9673(92)85472-6
  12. Batas, B. and J. B. Chaudhuri (1999) Considerations of sample application and elution during size-exclusion chromatography-based protein refolding. J. Chromatogr. A. 864: 229-236 https://doi.org/10.1016/S0021-9673(99)01030-4
  13. Pestka, S., A. J. Langers, C. K. Zoon, and C. E. Samuel (1987) Interferons and their actions. Annual Review Biochemistry 56: 727-777 https://doi.org/10.1146/annurev.bi.56.070187.003455
  14. Zhang, D. Z., S. H. Wu, Y. D. Hou, and C. Z. Su (1989) The purification of recombinant human interferon-${\gamma}$. Chinese J. Virology 5: 37-40
  15. Bradford, M. M. (1976) A rapid and sensitive method for the quantization of protein utilizing the principles of protein- dye binding. Anal. Biochem.72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  16. Du, P (1984) Medical Interferon. pp. 231-307. Liberation Army Publishing House, Beijing, China
  17. Laemmli, U. K. (1970) Detection of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  18. Gu, Z. Y., Z. G. Su, and J. C. Janson (2001) Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding. J. Chromatogr. A. 918: 311-318 https://doi.org/10.1016/S0021-9673(01)00766-X
  19. Li, M., G. F. Zhang, and Z. G. Su (2002) Dual gradient ion-exchange chromatography improved refolding yield of lysozyme. J. Chromatogr. A. 959: 113-120 https://doi.org/10.1016/S0021-9673(02)00462-4
  20. Kim, C. S. and E. K. Lee (2000) Effects of operating parameters in in vitro renaturation of a fusion protein of human growth hormone and glutathiones transferase for inclusion body. Process Biochemistry 36: 111-117 https://doi.org/10.1016/S0032-9592(00)00185-0
  21. Gao, Y. G., Y. X. Guan, S. J. Yao, and M. G. Cho (2003) On-column refolding of recombinant human interferon-$\gamma$ with an immobilized chaperone fragment. Biotechnol. Prog. 19: 915-920 https://doi.org/10.1021/bp025775l
  22. Gao, Y. G., Y. X. Guan, S. J. Yao, and M. G. Cho (2002) Refolding of lysozyme at high concentration in batch and fed-batch operation. Korean J. Chem. Eng. 19: 871-875 https://doi.org/10.1007/BF02706982
  23. Gao, Y. G., Y. X. Guan, S. J. Yao, and M. G. Cho (2003) Lysozyme refolding at high concentration by dilution and size-exclusion chromatography. J. Zhejiang University Science 4: 136-141 https://doi.org/10.1631/jzus.2003.0136
  24. Cho, T. H., S. J. Ahn, and E. K. Lee (2002) Refolding of protein inclusion bodies directly from E. coli homogenate using expanded bed adsorption chromatography. Bioseparation 10: 189-196 https://doi.org/10.1023/A:1016305603569