Synthesis and Characterization of Novel Light-Emitting Copolymers with Electron-Withdrawing Substituents

  • Jin, Sung-Ho (Department of Chemistry Education and Center for Plastic Information System, Pusan National University) ;
  • Koo, Dae-Sung (Department of Chemistry Education and Center for Plastic Information System, Pusan National University) ;
  • Hwang, Chan-Koo (Department of Chemistry Education and Center for Plastic Information System, Pusan National University) ;
  • Do, Jung-Yun (Department of Chemistry Education and Center for Plastic Information System, Pusan National University) ;
  • Kim, Young-Inn (Department of Chemistry Education and Center for Plastic Information System, Pusan National University) ;
  • Gal, Yeong-Soon (Polymer Chemsitry Lab., Kyungil University) ;
  • Lee, Jae-Wook (Department of Chemistry, Dong-A University) ;
  • Hwang, Jin-Taek
  • 발행 : 2005.04.01

초록

We synthesized two new series of alternating copolymers, poly[bis(2-(4-phenylenevinylene)-2-cyanoethenyl)-9,9-dihexyl-9H-fluoren-2,7-yl-alt-1,4-phenylene](Polymer-I)and poly[bis(2-(4-phenylenevinylene)-2­cyanoethenyl)-9,9-dihexyl-9H-fluoren-2,7-yl-alt-2,7-(9,9-dihexylfluorene)](Polymer-II), via the Suzuki coupling reaction, for use in light-emitting diodes (LEDs). Defect-free uniformly thin films of these polymers were found to be easily formed on indium-tin oxide (ITO) coated glass substrates. Multi-layer LEDs with ITO/PEDOT/Polymer/ LiF/Al configurations with or without an $Alq_3$ electron transport layer were fabricated with these polymers. The maximum EL emissions of Polymer-I and Polymer-II with an $Alq_3/LiF/Al$ cathode were observed at 516 and 533 nm, respectively. The maximum brightness and external luminance efficiency of the devices fabricated with the EL polymers were found to be $411 cd/m^2$ and 0.16 cd/A, respectively.

키워드

참고문헌

  1. C. W. Tang and S. A. VanSlyke, Appl. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98983
  2. S. A. VanSlyke, P. S. Bryan, and C. W. Tang, Proceedings of the 8th International Workshop on Inorganic and Organic Electroluminescence, Berlin, Germany, 1996, pp 195
  3. J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281 (1995) https://doi.org/10.1063/1.114970
  4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990) https://doi.org/10.1038/347539a0
  5. G. Grem, G. Leditzky, B. Ullrich, and G. Leising, Adv. Mater., 4, 36 (1992) https://doi.org/10.1002/adma.19920040107
  6. D. H. Hwang, H. K. Shim, J. I. Lee, and K. S. Lee, J. Chem. Soc., Chem. Commun., 2461 (1994)
  7. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature, 365, 628 (1993) https://doi.org/10.1038/365628a0
  8. Y. Q. Liu, X. Z. Jiang, Q. L. Li, and D. B. Zhu, Synth. Met., 4, 36 (1997)
  9. Z. Peng, Z. Bao, and M. E. Galving, Adv. Mater., 10, 680 (1998) https://doi.org/10.1002/(SICI)1521-4095(199806)10:9<680::AID-ADMA680>3.0.CO;2-H
  10. Y. Q. Liu, M. S. Liu, X. C. Li, and A. K. Y. Jen, Chem. Mater., 10, 3301 (1998) https://doi.org/10.1021/cm980498s
  11. X. C. Li, Y. Q. Liu, M. S. Liu, and A. K. Y. Jen, Chem. Mater., 11, 1568 (1999) https://doi.org/10.1021/cm990018c
  12. M. D. Johansson, X. Wang, T. Johansson, O. Inganas, G. Yu, G. Srdanov, and M. R. Andersson, Macromolecules, 35, 4997 (2002) https://doi.org/10.1021/ma011278u
  13. H. Spreitzer, H. Becker, E. Kluge, W. Kreuder, H. Schenk, R. Demandt, and H. Schoo, Adv. Mater., 10, 1340 (1998) https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1340::AID-ADMA1340>3.0.CO;2-G
  14. M. T. Bemius, M. Inbasekaran, J. OBrien, and W. S. Wu, Adv. Mater., 12, 1737 (2000) https://doi.org/10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
  15. J. Ding, M. Day, G Robertson, and J. Roovers, Macromolecules, 35, 3474 (2002) https://doi.org/10.1021/ma011278u
  16. U. Scherf and E. J. List, Adv. Mater., 14, 477 (2002) https://doi.org/10.1002/1521-4095(20020404)14:7<477::AID-ADMA477>3.0.CO;2-9
  17. A. D. Bouillud, I. Levesque, Y. Tao, M. DIorio, S. Beaupre, P. Blondin, M. Ranger, J. Bouchard, and M. Leclerc, Chem. Mater., 12, 1931 (2000) https://doi.org/10.1021/cm0001298
  18. X. Zhan, S. Wang, Y. Liu, X. Wu, and D. Zhu, Chem. Mater., 15, 1963 (2003) https://doi.org/10.1021/cm020766t
  19. S. H. Jin, J. E. Jung, D. K. Park, B. C. Jeon, S. K. Kwon, Y. H. Kim, D. K. Moon, and Y. S. Gal, Eur. Polym. J., 37, 921 (2001) https://doi.org/10.1016/S0014-3057(00)00100-2
  20. J. H. Lee, H. S. Yu, W. Kim, Y. S. Gal, J. H. Park, and S. H. Jin, J. Polym. Sci.; Part A: Polym. Chem., 38, 4185 (2000) https://doi.org/10.1002/1099-0518(20001201)38:23<4185::AID-POLA30>3.0.CO;2-F
  21. S. H. Jin, Y. K. Sun. B. H. Sohn, and W. H. Kim, Eur. Polym. J., 36, 957 (2000) https://doi.org/10.1016/S0014-3057(99)00138-X
  22. S. H. Jin, M. S. Jang, H. S. Suh, H. N. Cho, J. H. Lee, and Y. S. Gal, Chem. Mater., 14, 643 (2002) https://doi.org/10.1021/cm010593s
  23. S. H. Jin, H. J. Park, J. Y. Kim, K. Lee, S. P. Lee, D. K. Moon, H. J. Lee, and Y. S. Gal, Macromolecules, 35, 7532 (2002) https://doi.org/10.1021/ma011278u
  24. S. H. Jin, S. Y. Kang, M. Y. Kim, U. C. Yoon, J. Y. Kim, K. Lee, and Y. S. Gal, Macromolecules, 36, 3841 (2003) https://doi.org/10.1021/ma0300490
  25. S. H. Jin, M. Y. Kim, J. Y. Kim, K. Lee, and Y. S. Gal, J. Am. Chem. Soc., 126, 2474 (2004) https://doi.org/10.1021/ja037954k
  26. S. H. Jin, M. Y. Kim, S. H. Park, K. Lee, and Y. S. Gal, Chem. Mater., 16, 3299 (2004) https://doi.org/10.1021/cm035055p
  27. W. L. Yu, J. Pei. Y. Cao, W. Huang, and A. J. Heeger, Chem. Commun., 1837 (1999)