DOI QR코드

DOI QR Code

Cardiorespiratory Regulations in the Japanese Amberjack (Seriola quinqueradiata) Exposed to Acute Hypoxia

저산소환경이 방어(Seriola quinqueradiata) 순환계의 산소운반 기능에 미치는 영향

  • LEE Kyoung Seon (Institute for East China Sea Research, Nagasaki University) ;
  • ISHIMATSU Atsushi (Institute for East China Sea Research, Nagasaki University) ;
  • JEON Joong Kyun (Faculty of Marine Bioscience & Technology, Kangnung National University)
  • 이경선 (나가사키대학 환동지나해 해양자원연구센터) ;
  • 이시마츠 아츠시 (나가사키대학 환동지나해 해양자원연구센터) ;
  • 전중균 (강릉대학교 해양생명공학부)
  • Published : 2005.04.01

Abstract

We studied the cardio-respiratory properties in the Japanese amberjack (Seriola quinqueradiata) during acute hypoxia exposure. Fish were exposed to three levels of hypoxia (80, 60 or 50 mmHg) for 60 min at $25^{\circ}C$. Cardiovascular parameters (cardiac output; Q, heart rate; HR, stroke volume; SV, blood pressure; $P_{DA}$) changed little from pre-exposure values during both 80 and 60 mmHg of hypoxia. During 50 mmHg of hypoxia, the fish showed a bradycardia which significantly affected Q, whereas no change in SV. $P_{DA}$ increased transiently. Arterial oxygen partial pressure ($PaO_2$) immediately reduced along with a decrease of the water oxygen partial pressure ($P_WO_2$). Arterial $O_2$ content ($CaO_2$) decreased significantly only after 60 min of 50 mmHg of hypoxia. Arterial pH (pHa) and hematocrit value (Hct) did not change significantly. Comparing the effects of different levels of hypoxia, oxygen delivery to the tissues ($Q\;{\times}\;CaO_2$) should be maintained a constant over a broad range of $P_WO_2$, however, severely depressed below 50 mmHg of hypoxia.

Keywords

References

  1. Bushnell, P.G., R.W. Brill and R.E. Bourke. 1990. Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions of ambient oxygen. Can. J. Zool., 68, 1857-1865 https://doi.org/10.1139/z90-265
  2. Bushnell, P.G. and R.W. Brill. 1991. Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas to acute hypoxia, and a model of their cardiorespiratory function. Physiol. Zool., 64, 781-811
  3. Bushnell, P.G. and R.W. Brill. 1992. Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J. Comp. Physiol., 162B, 131-143
  4. Cech, J.J., Jr., D.M. Rowell and J.S. Glasgow. 1977. Cardiovascular responses of the winter flounder Pseudopleuronectes americanus to hypoxia. Comp. Biochem Physiol., 57A, 123-125
  5. Chan, D.K.O. 1986. Cardiovascular, respiratory, and blood adjustments to hypoxia in the Japanese eel, Anguilla japonica. Fish Physiol. Biochem., 2, 179-193 https://doi.org/10.1007/BF02264086
  6. Farrell, A.P. 1982. Cardiovascular changes in the unanaesthetized lingcod (Ophiodeon elongatus) during short-term, progressive hypoxia and spontaneous activity. Can. J. Zool., 60, 933-941 https://doi.org/10.1139/z82-127
  7. Farrell, A.P. 1984. A review of cardiac performance in the teleost heart: intrinsic and humoral regulation. Can. J. Zool., 62, 523-536 https://doi.org/10.1139/z84-079
  8. Fritsche, R. 1990. Effects of hypoxia on blood pressure and heart rate in three marine teleosts. Fish Physiol. Biochem., 8, 85-92 https://doi.org/10.1007/BF00004435
  9. Fritsche, R. and S. Nilsson. 1989. Cardiovascular responses to hypoxia in the Atlantic cod, Gadus morhua. Exp. Biol., 48, 153-160
  10. Hishida, Y., H. Katoh, T. Oda and A. Ishimatsu. 1998. Comparison of physiological responses to exposure to Chattonella marina in yellowtail, red sea bream and Japanese flounder. Fish. Sci., 64, 875-881 https://doi.org/10.2331/fishsci.64.875
  11. Holeton, G.F. and D.J. Randall. 1967. The effect of hypoxia upon the partial pressure of gases in the blood and water afferent and efferent to the gills of rainbow trout. J. Exp. Biol., 46, 317-327
  12. Iwama, G.K. and A. Ishimatsu. 1994. Cannulation of blood vessels. Tech. Fish Immunol., 3, 1-16
  13. Ishimatsu, A., H. Maruta, T. Tsuchiyama and M. Ozaki. 1990. Respiratory, ionoregulaory and cardiovascular responses of the yellowtail Seriola quinqueradiata to exposure to the red tide plankon Chattonella. Nippon Suisan Gakkaishi, 56, 189-199 https://doi.org/10.2331/suisan.56.189
  14. Ishimatsu, A., H. Maruta, T. Oda and M. Ozaki. 1997. A comparison of physiological responses in yellowtail to fatal environmental hypoxia and exposure to Chattonella marina. Fish. Sci., 63, 557-562 https://doi.org/10.2331/fishsci.63.557
  15. Lee, K.S., A. Ishimatsu, H. Sakaguchi and T. Oda. 2003a. Cardiac output during exposure to Chattonella marina and environmental hypoxia in yellowtail (Seriola quinqueradiata). Mar. Biol., 142, 391-397 https://doi.org/10.1007/s00227-002-0955-x
  16. Lee, K.S., J. Kita and A. Ishimatsu. 2003b. Effects of lethal levels of environmental hypercapnia on cardiovascular and blood-gas status in yellowtail, Seriola quinqueradiata. Zool. Sci., 20, 417-422 https://doi.org/10.2108/zsj.20.417
  17. Petterson, K. and K. Johansen. 1982. Hypoxic vasoconstriction and the effects of adrenaline on gas exchange efficiency in fish gills. J. Exp. Biol., 97, 263-272
  18. Peyraud-Waitzenegger, M. and P. Soulier. 1989. Ventilator and circulatory adjustments in the european eel (Anguilla anguilla L.) exposed to short term hypoxia. Exp. Biol., 48, 107-122
  19. Randall, D.J. 1982. The control of respiration and circulation in fish during exercise and hypoxia. J. Exp. Biol., 100, 275-288
  20. Randall, D.J. and C. Daxboeck. 1984. Oxygen and carbon dioxide transfer across fish gills. In: Fish Physiology. Hoar, W.S. and D.J. Randall, eds. Academy Press, New York, pp. 263-314
  21. Sundin, L.I. 1995. Responses of the branchial circulation to hypoxia in the Atlantic cod, Gadus morhua. Am. J. Physiol., 268, R771-R778
  22. Tetens, V. and G. Lykkeboe. 1985. Acute exposure of rainbow trout to mild and deep hypoxia: $O_2$ affinity and $O_2$ capacitance of arterial blood. Res. Physiol., 61, 221-235 https://doi.org/10.1016/0034-5687(85)90128-8
  23. Thomas, S. and G.M. Hughes. 1982. A study of the effects of hypoxia on acid-base status of rainbow trout blood using an extracorporeal blood circulation. Res. Physiol., 49, 371-382 https://doi.org/10.1016/0034-5687(82)90123-2
  24. Wood, C.M. and G. Shelton, 1980. The reflux control of heart rate and cardiac output in the rainbow trout: interactive influences of hypoxia, haemorrhage, and systemic vasomotor tone. J. Exp. Biol., 87, 271-284
  25. Yamamoto, K., T. Hironaka, H. Yamashita and K. Wataishi. 1990. Changes of oxygen consumption in yellowtail, saddled weever, scorpion-fish, Richardson dragonet and tiger puffer under progressive hypoxia. Suisanzoshoku, 38, 35-39

Cited by

  1. Effect of low dissolved oxygen on the oxygen consumption rate and rhythm of the mudskipper Scartelaos gigas (Pisces, Gobiidae) vol.78, pp.5, 2005, https://doi.org/10.1007/s12562-012-0536-y