DOI QR코드

DOI QR Code

Atomic Scale Modeling of Chemical Mechanical Polishing Process

Chemical Mechanical Polishing 공정에 관한 원자단위 반응 모델링

  • 변기량 (중앙대학교 전자전기공학부) ;
  • 강정원 (중앙대학교 전자전기공학부) ;
  • 송기오 (중앙대학교 전자전기공학부) ;
  • 황호정 (중앙대학교 전자전기공학부)
  • Published : 2005.05.01

Abstract

This paper shows the results of atomistic modeling for the Interaction between spherical nano abrasive and substrate In chemical mechanical polishing processes. Atomistic modeling was achieved from 2-dimensional molecular dynamics simulations using the Lennard-jones 12-6 potentials. We proposed and investigated three mechanical models: (1) Constant Force Model; (2) Constant Depth Model, (3) Variable Force Model, and three chemical models, such as (1) Chemically Reactive Surface Model, (2) Chemically Passivating Surface Model, and (3) Chemically Passivating-reactive Surface Model. From the results obtained from classical molecular dynamics simulations for these models, we concluded that atomistic chemical mechanical polishing model based on both Variable Force Model and Chemically Passivating-reactive Surface Model were the most suitable for realistic simulation of chemical mechanical polishing in the atomic scale. The proposed model can be extended to investigate the 3-dimensional chemical mechanical polishing processes in the atomic scale.

Keywords

References

  1. R. K Singh and R. Bajaj, 'Advances in chemical mechanical planarization', MRS Bulletin, Vol. 27, No. 10, p. 743, 2002
  2. R. K Singh, S.-M. Lee, K-S. Choi, G. B. Basim, W. Choi, Z. Chen, and B. M. Moudgil, 'Fundamentals of slurry design for CMP of metal and dielectric materials', MRS Bulletin, Vol. 27, No. 10, p, 752, 2002
  3. D. Boning and B. Lee, 'Nanotopography issues in shallow trench isolation CMP', MRS Bulletin, Vol. 27, No. 10, p. 761, 2002
  4. R. Komanduri, N. Chandrasekarna, and L. M. Raff, 'M. D. simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting', Wear, Vol. 242, No. 1-2, p. 60, 2000 https://doi.org/10.1016/S0043-1648(00)00399-9
  5. R. Komanduri, N. Chandrasekama, and L. M. Raff, 'MD simulation of exit failure in nanometric cutting', Mater. Sci. Eng. A, Vol. 311, No. 1-2, p. 1, 2001 https://doi.org/10.1016/S0921-5093(01)00960-1
  6. R. Komanduri and L. M. Raff, 'A review on the molecular dynamics (MD) simulation of machining', Proc. of the I. Mech. E. (Lon) B, Vol. 215, p. 1639, 2001
  7. T. H. Fang, S. R. Jian, and D. S. Chuu, 'Molecular dynamics annalysis of effects of velocity and loading on the nano indentation', Jap. J. Appl, Phys., Vol. 41, No. 11B, p. L1328, 2002
  8. T. H. Fang, C. I. Weng, and J. G. Chang, 'Molecular dynamics simulation of nanolithography process using atomic force microscopy', Surf. Sci., Vol. 501, No. 1-2, p. 138, 2002 https://doi.org/10.1016/S0039-6028(01)02023-4
  9. T. H. Fang and C. I. Weng, 'Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale', Nanotechnology, Vol. 11, No.3, p. 148, 2000
  10. T. Yokosuka, H. Kurokawa, S. Takami, M. Kubo, A. Miyamoto, and A. Imanura, 'Development of new tight-binding molecular dynamics program to simulate chemical-mechanical polishing processes', Jap. J. Appl, Phys., Vol. 41, No. 4B, p. 2410, 2002
  11. D. Feichtinger, P. M. Derlet, and H. Van Swygenhoven, 'Atomistic simulations of spherical indentations In nanocrystalline gold', Phys, Rev. B, Vol. 67, No.2, p. 024113, 2003
  12. Y. Ye, R. Biswas, A. Bastawros, and A. Chandra, 'Simulation of chemical mechanical planarization of copper with molecular dynamics', Appl. Phys, Lett., Vol. 81, No. 10, p. 1875, 2002 https://doi.org/10.1063/1.1507611
  13. Y. Ye, R. Biswas, J. R. Morris, A. Bastawros, and A. Chandra, 'Molecular dynamics simulation of nanoscale machining of copper', Nanotechnology, Vol. 14, No.3, p. 390, 2003
  14. J. D. Kim and C. H. Moon, 'A study on microcutting for the configuration of tools using molecular dynamics', J. Mater. Proc. Tech., Vol. 59, No.4, p. 309, 1996
  15. L. Zhang and H. Tanaka, 'Towards. a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis', Wear, Vol. 211, No.1, p. 44, 1997
  16. L. Zhang and H. Tanaka, 'Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding', Tribology Int., Vol. 31, No.8, p. 425, 1998
  17. T. Nozaki, M. Doyama, Y. Kogure, and T. Yokotsuka, 'Micromachining of pure silicon by molecular dynamics'. Thin Solid Films, Vol. 334, No. 1-2, p, 221, 1998 https://doi.org/10.1016/S0040-6090(98)01105-5
  18. M. Doyama, T. Nozaki, and Y. Kogure, 'Cutting, compression and shear of silicon small single crystals', Nucl. Instru. Meth. Phys, B, Vol. 153, No. 1-4, p. 147, 1999 https://doi.org/10.1016/S0168-583X(98)00981-1
  19. M. Doyama, T. Nozaki, Y. Kogure, and T. Yokotsuka, 'Plastic deformation of pure silicon nanocrystals by molecular dynamics', Nanostructured Mater., Vol. 12, No. 1-4, p. 333, 1999 https://doi.org/10.1016/S0965-9773(99)00055-0
  20. M. P. Allen and D. J. Tildesley, 'Computer Simulation of Liquids', Oxford, Clarendon, p. 81, 1987