DOI QR코드

DOI QR Code

연소법으로 합성한 LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+ 전기화학적 특성

Electrochemical Properties of LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+ Synthesized by Combustion Method

  • 권익현 (전북대학교 신소재공학부 공학연구원공업기술연구센터) ;
  • 송명엽 (전북대학교 신소재공학부 공학연구원공업기술연구센터)
  • Kwon, Ikhyun (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University) ;
  • Song, Myoungyoup (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University)
  • 발행 : 2005.04.01

초록

산소분위기, $750^{\circ}C$서 36 h 동안 하소함으로써 연소법에 의해 $LiNi_{1-y}M_{y}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+},\;0.000\{\le}y{\le}0.100)$를 합성하였다. 각 시료에 대해 XRD 분석, FE-SEM 관찰, 싸이클 수에 따른 방전 용량의 변화 조사가 행해졌다. $LiNi_{0.99}M_{0.01}O_{2}$ (M=Zn, Al, and Ti) 조성이 여러 조성 중에서 대체로 우수한 전기화학적 특성을 나타내었다. 결정성과 cation mixing의 평가에서 Zn을 치환한 경우 결정성이 나쁘게 나타났고 Ti를 치환한 경우 cation mixing이 크게 나타났으며, Al을 치환한 경우 결정성이 좋고 cation mixing이 적게 나타났다. Al을 치환한 경우 싸이클 특성이 개선되었다.

$LiNi_{1-y}M_{y}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+},\;0.000\{\le}y{\le}0.100)$ were synthesized by the combustion method by calcining in $O_{2}$ stream at $750^{\circ}C$ for 36 h. XRD analyses, observation by FE-SEM and measurement of the variation of discharge capacity with the number of cycles were carried out. The composition $LiNi_{0.99}M_{0.01}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+})$ of all the compositions showed relatively good electrochemical properties. $LiNi_{0.99}M_{0.01}O_{2}$ exhibited poor crystallinity and $LiNi_{0.99}M_{0.01}O_{2}$ showed the cation mixing of large fraction. $LiNi_{0.99}M_{0.01}O_{2}$ with improved cycling performance showed good crystallinity and the cation mixing of small fraction.

키워드

참고문헌

  1. T. Ohzuku and A. Ueda, ' Solid-State Redox Reactions of $LiCoO_{2}$(R3m) for Four-Volt Secondary Lithium Cells,' J. Electrochem. Soc., 141 2972-77 (1991) https://doi.org/10.1149/1.2059267
  2. J. N. Reimer and J. R. Dahn, 'Electrochemical and in Situ X-Ray Diffraction Studies of Lithium Intercalation in $Li_{x}CoO_{2}$,' J. Electrochem. Soc., 139 2091-96 (1992) https://doi.org/10.1149/1.2221184
  3. M. Yoshio, H. Tanaka, K. Tominaga, and H. Noguchi, ' Synthesis of $LiCoO_{2}$ from Cobalt-Organic Acid Complexes and Its Electrode Behaviour in a Lithium Secondary Battery,' J. Power Sources, 40 347-53 (1992) https://doi.org/10.1016/0378-7753(92)80023-5
  4. K. Ozawa, ' Lithium-Ion Rechargeable Batteries with $LiCoO_{2}$ and Carbon Electrodes: The $LiCoO_{2}$/C System,' Solid State Ionics, 69 212-21 (1994) https://doi.org/10.1016/0167-2738(94)90411-1
  5. H. Rim, S. G. Kang, S. H. Chang, and M. Y. Song, ' A Study on the Synthesis and the Electrochemical Properties of $LiNi_{1-y}Co_{y}O_{2}$ from $Li_{2}CO_{3}$, $NiCO_{3}$, and $CoCO_{3}$,' J. Kor. Ceram. Soc., 38 [6] 515-21 (2001)
  6. M. Y. Song, H. Rim, E. Y. Bang, S. G Kang, and S. H. Chang, 'Synthesis of Cathode Materials $LiNi_{1-y}Co_{y}O_{2}$ from Various Starting Materials and Their Electrochemical Properties,' J. Kor. Ceram. Soc., 40 [6] 507-12 (2003) https://doi.org/10.4191/KCERS.2003.40.6.507
  7. J. R. Dahn, U. von Sacken, M. R. Jukow, and H. AI-Janaby, ' Rechargeable $LiNiO_{2}$/Carbon Cells,' J. Electrochem. Soc., 138 2207-11 (1991) https://doi.org/10.1149/1.2085950
  8. J. M. Tarascon, D. Guyomard, and G. L. Baker, ' An Update of the Li Metal-Free Rechargeable Battery Based on $Li_{1+x}Mn_{2}O_{4}$ Cathodes and Carbon Anodes,' J. Power Sources, 44 689-700 (1993) https://doi.org/10.1016/0378-7753(93)80220-J
  9. M. Y. Song and R. Lee, ' Synthesis by Sol-Gel Method and Electrochemical Properties of $LiNiO_{2}$ Cathode Material for Lithium Secondary Battery,' J. Power Sources, 111 [1] 97-103 (2002) https://doi.org/10.1016/S0378-7753(02)00263-X
  10. M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, ' Lithium Insertion into Manganese Spinels,' Mat. Res. Bull., 18 461-72 (1983) https://doi.org/10.1016/0025-5408(83)90138-1
  11. M. M. Thackeray, P. J. Johnson, and L. A. de Picciotto, ' Electrochemical Extraction of Lithium from $LiMn_{2}O_{4}$,' Mat. Res. Bull., 19 179-87 (1984) https://doi.org/10.1016/0025-5408(84)90088-6
  12. A. Momchilov, V. Manev, and A. Nassalevska, ' Rechargeable Lithium Battery with Spinel-Related $MnO_{2}$ II. Optimization of the $LiMn_{2}O_{4}$ Synthesis Conditions,' J. Power Sources, 41 305-14 (1993) https://doi.org/10.1016/0378-7753(93)80048-T
  13. T. Ohzuku, M. Kitagawa, and T. Hirai, ' Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell (III) X-Ray Diffractional Study on the Reduction of Spinel-Related Manganese Dioxide,' J. Electrochem. Soc., 137 769-74 (1990) https://doi.org/10.1149/1.2086552
  14. G. Pistoia and G. Wang, ' Aspects of the $Li^+$ Insertion into $Li_{x}Mn_{2}O_{4}$ for 0 https://doi.org/10.1016/0167-2738(93)90036-3
  15. A. Yamada, K. Miura, K. Hinokuma, and M. Tanaka, ' Synthesis and Structural Aspects of $LiMn_{2}O_{4}$+/-delta as a Cathode for Rechargeable Lithium Batteries,' J. Electrochem. Soc., 142 2149-55 (1995) https://doi.org/10.1149/1.2044266
  16. Y. Gao and J. R. Dahn, ' Synthesis and Characterization of $Li_{1+x}Mn_{2-x}O_{4}$ for Li-Ion Battery Applications,' J. Electrochem. Soc., 143 100-13 (1996) https://doi.org/10.1149/1.1836393
  17. Y. Xia and M. Yoshia, ' An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds,' J. Electrochem. Soc., 143 825-33 (1996) https://doi.org/10.1149/1.1836544
  18. Z. Jiang and K. M. Abraham, ' Preparation and Electrochemical Characterization of Micron-Sized Spinel $LiMn_{2}O_{4}$,' J. Electrochem. Soc., 143 1591-97 (1996) https://doi.org/10.1149/1.1836684
  19. D. H. Jang, Y. J. Shin, and S. M. Oh, ' Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/$Li_{x}Mn_{2}O_{4}$ Cells,' J. Electrochem. Soc., 143 2204-10 (1996) https://doi.org/10.1149/1.1836981
  20. D. S. Ahn and M. Y. Song, ' Variations of the Electrochemical Properties of $LiMn_{2}O_{4}$ with Synthesis Conditions,' J. Electrochem. Soc., 147 [3] 874-79 (2002) https://doi.org/10.1149/1.1393285
  21. M. Y. Song, I. H. Kwon, and M. S. Shon, ' Electrochemical Properties of $LiNi_{y}Mn_{2-y}O_{4}$ Prepared by the Solid-State Reaction,' J. Kor. Ceram. Soc., 40 [5] 401-04 (2003) https://doi.org/10.4191/KCERS.2003.40.5.401
  22. T. Ohzuku and A. Ueda, ' Why Transition Metal (di) Oxides are the Most Attractive Materials for Batteries,' Solid State Ionics, 69 201-11 (1994) https://doi.org/10.1016/0167-2738(94)90410-3
  23. K. Brandt, ' Historical Development of Secondary Lithium Batteries,' Solid State Ionics, 69 173-83 (1994) https://doi.org/10.1016/0167-2738(94)90408-1
  24. B. Scrosati, ' Lithium Rocking Chair Batteries: An Old Concept?,' J. Electrochem. Soc., 139 2776-80 (1992) https://doi.org/10.1149/1.2068978
  25. I. H. Kwon, ' A Study on the Synthesis and the Electrochemical Properties of Cathode Materials $LiNi_{1-y}M_{y}O_{2}$ (M=Zn, AI, Ti, and Fe) by the Combustion Method for Lithium Secondary Battery,' Ph D. Thesis, Chonbuk National University, 2005

피인용 문헌

  1. Effects of Zn, Al and Ti substitution on the electrochemical properties of LiNiO2 synthesized by the combustion method vol.49, pp.3, 2013, https://doi.org/10.1134/S1023193513030099