References
-
F. Beatrous,
$L^p$ estimates for extensions of holomorphic functions, Michigan Math. J. 32 (1985), 361-380 https://doi.org/10.1307/mmj/1029003244 - F. Beatrous, Estimates for Derivatives of Holomorphic Functions in Pseudoconvex Domains, Math. Z. 191 (1986), 91-116 https://doi.org/10.1007/BF01163612
- H. R. Cho, Estimates on the mean growth of Hp functions in convex domains of finite type, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2393-2398
- H. R. Cho and E. G. Kwon, Sobolev-type embedding theorems for harmonic and holomorphic Sobolev spaces, J. Korean Math. Soc. 40 (2003), no. 3, 435-445 https://doi.org/10.4134/JKMS.2003.40.3.435
- H. R. Cho and E. G. Kwon, Growth rate of the functions in Bergman type spaces, J. Math. Anal. Appl. 285 (2003), 275-281 https://doi.org/10.1016/S0022-247X(03)00416-5
-
P. L. Duren, Theory of
$H^p$ spaces, Academic Press, New York, 1970 - M. M. Peloso, Hankel operators on weighted Bergman spaces on strongly domains, Illinois J. Math. 38 (1994), no. 2, 223-249
- R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, Berlin, 1986
- J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of Cn, Trans. Amer. Math. Soc. 328 (1991), no. 2, 619-637 https://doi.org/10.2307/2001797
Cited by
- On Traces in Some Analytic Spaces in Bounded Strictly Pseudoconvex Domains vol.2015, 2015, https://doi.org/10.1155/2015/265245