INEQUALITIES FOR THE INTEGRAL MEANS OF HOLOMORPHIC FUNCTIONS IN THE STRONGLY PSEUDOCONVEX DOMAIN

HONG RAE CHO AND JINKEE LEE

ABSTRACT. We obtain the following two inequalities on a strongly pseudoconvex domain Ω in \mathbb{C}^n : for $f \in \mathcal{O}(\Omega)$

$$\begin{split} \int_0^{\delta_0} t^{a|\alpha|+b} M_p^a(t,D^\alpha f) \, dt &\lesssim \int_0^{\delta_0} t^b M_p^a(t,f) \, dt \\ &\int_0^{\delta_0} t^b M_p^a(t,f) \, dt \lesssim \sum_{i=0}^m \int_0^{\delta_0} t^{am+b} M_p^a\Big(t,\mathcal{N}^j f\Big) \, dt. \end{split}$$

In [9], Shi proved these results for the unit ball in \mathbb{C}^n . These are generalizations of some classical results of Hardy and Littlewood.

1. Introduction and statement of results

Let Ω be a bounded, strongly pseudoconvex domain in \mathbb{C}^n with smooth boundary and ρ be a defining function for Ω . We let dV denote the Lebesgue measure on Ω and $d\sigma$ denote the surface measure on the boundary $\partial\Omega$ of Ω . By $\mathcal{O}(\Omega)$ we denote the class of all functions holomorphic in Ω . For s>-1, let L^p_s be the L^p -space $L^p(\Omega,dV_s)$, where $dV_s=(-\rho)^s dV$. We denote by A^p_s the space of all holomorphic functions in L^p_s , and we define A^p_{-1} to be the usual Hardy class consisting of holomorphic functions with boundary values in L^p_{-1} . The integral means $M_p(r,f)$ of f, 0 , are defined by

$$M_p(r,f) = \left\{ \int_{\partial \Omega} |f(r\zeta)|^p d\sigma(\zeta) \right\}^{1/p}.$$

Received September 10, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 32A10, 32A99.

Key words and phrases: strongly pseudoconvex domain, integral means, Levi polynomial.

The first author was supported by grant No. R05-2004-000-10469-0 from the Basic Research Program of the Korea Science & Engineering Foundation and the second author was supported by Korea Research Foundation Grant (KRF-2002-050-C00002).

Let N be a real vector field in a neighborhood of $\partial\Omega$ which agrees with the outward unit normal vector field on $\partial\Omega$. For $z\in\partial\Omega$ and t>0sufficiently small, say $0< t<\delta_0$, the integral curve of N through z has a unique intersection point with the hypersurface $\{\delta=t\}$. We call this intersection point z_t . For any function f on Ω we define f_t on $\partial\Omega$ by $f_t(z)=f(z_t)$ for $z\in\partial\Omega$.

For $f \in \mathcal{O}(\Omega)$, denote

$$(D^{\alpha}f)(z) = \frac{\partial^{|\alpha|}f}{\partial z_1^{\alpha_1} \dots \partial z_n^{\alpha_n}}(z).$$

Let \mathcal{N} be the complex normal vector field of type (1,0) defined by

$$\mathcal{N} = \sum_{j=1}^{n} \frac{\partial \rho}{\partial \bar{\zeta}_{j}} \frac{\partial}{\partial \zeta_{j}}.$$

The main results of this paper are the following two theorems.

THEOREM 1. Let $f \in \mathcal{O}(\Omega)$, $1 and <math>-1 < b < \infty$ and $0 < a < \infty$. Then

$$\int_0^{\delta_0} t^{a|\alpha|+b} M_p^a(t, D^{\alpha} f) dt \lesssim \int_0^{\delta_0} t^b M_p^a(t, f) dt.$$

Theorem 2. Let $f \in \mathcal{O}(\Omega)$, $1 < a \le p < \infty$ and $-1 < b < \infty$. Then

$$\int_0^{\delta_0} t^b M_p^a(t,f) dt \lesssim \sum_{i=0}^m \int_0^{\delta_0} t^{am+b} M_p^a \left(t, \mathcal{N}^j f\right) dt.$$

COROLLARY 3. Let m be a positive integer and $f \in \mathcal{O}(\Omega)$. Then $f \in L^p, 1 , if and only if <math>\delta(z)^m D^{\alpha} f(z) \in L^p$ for all α with $|\alpha| = m$.

PROOF. Let $0 \le j \le m$. In [CK1], we proved that there is a compact subset K of Ω such that

$$\int_{\Omega \backslash K} \delta(\zeta)^{mp} |\nabla^j f(\zeta)|^p dV \lesssim \int_{\Omega \backslash K} \delta(\zeta)^{(m+1)p} |\nabla^{j+1} f(\zeta)|^p dV + \sup_K |\nabla^j f|^p.$$

Thus we get the result by Theorems 1 and 2.

Here we use the notation $A \lesssim B$ for the two expressions A and B which means that there is a constant C, independent of the quantities under consideration, such that $A \leq C \cdot B$. When $A \lesssim B$ and $B \lesssim A$, we use the notation $A \sim B$.

These two theorems generalize the classical results of Hardy- Little-wood (see [6]) to the strongly pseudoconvex domain of \mathbb{C}^n . In case of

the unit ball, see Theorems 1 and 2 in [9]. In [3] and [5], we can see other cases of Hardy-Littlewood type inequalities in bounded domains in \mathbb{C}^n .

2. Notations and some technical results

Let Ω be a C^{∞} -bounded strongly pseudoconvex domain with the defining function ρ . We need some results for our proofs. See [1], [2] and [8] in detail. We let $g(z,\zeta)$ be the associated Levi polynomial

$$g(z,\zeta) = 2\sum_{j=1}^{n} \frac{\partial \rho}{\partial \zeta_{j}}(\zeta)(\zeta_{j} - z_{j}) - \sum_{j,k=1}^{n} \frac{\partial^{2} \rho}{\partial \zeta_{j} \partial \zeta_{k}}(\zeta)(\zeta_{j} - z_{j})(\zeta_{k} - z_{k}).$$

It follows from Taylor's formula and the strict plurisubharmonicity of ρ that there are positive constants C_1 and r and a neighborhood Ω' of $\overline{\Omega}$ such that

Re
$$g(z,\zeta) \ge \rho(\zeta) - \rho(z) + C_1|z-\zeta|^2$$

for $z, \zeta \in \Omega'$ and $|z - \zeta| \le r$. Setting $\tilde{g}(z, \zeta) = g(z, \zeta) - 2\rho(\zeta)$, it follows that

(1) Re
$$\tilde{g}(z,\zeta) = \text{Re } g(z,\zeta) - 2\rho(\zeta) \ge -\rho(\zeta) - \rho(z) + C_1|z-\zeta|^2$$

for $z, \zeta \in \Omega'$ and $|z - \zeta| \le r$ and $\tilde{g}(z, \zeta) = g(z, \zeta)$ for $\zeta \in \partial \Omega$. Also we have

$$\mathcal{N} \ \tilde{g}(z,\zeta) = \mathcal{O}(|z-\zeta|^2).$$

LEMMA 4. [1] Let \tilde{g} , Ω' , r and C_1 be as above. There is a neighborhood $\tilde{\Omega}$ of $\bar{\Omega}$ with $\tilde{\Omega} \supset \Omega'$, a C^{∞} function $\tilde{\Phi}$ on $\tilde{\Omega} \times \tilde{\Omega}$, and a positive constant C_2 such that

- (i) for any $\zeta \in \tilde{\Omega}$ the function $\tilde{\Phi}(\cdot,\zeta)$ is holomorphic on $\tilde{\Omega}$;
- (ii) $\tilde{\Phi}(\zeta,\zeta) = -2\rho(\zeta)$ for $\zeta \in \tilde{\Omega}$, and $|\tilde{\Phi}(z,\zeta)| \geq C_2$ for $z,\zeta \in \tilde{\Omega}$ with $|z-\zeta| \geq \frac{r}{2}$;
- (iii) there is a non-vanishing C^{∞} function $Q(z,\zeta)$ on

$$\Delta_{\frac{r}{2}} = \{(z,\zeta) \in \tilde{\Omega} \times \tilde{\Omega} : |z-\zeta| \le \frac{r}{2}\} \text{ such that }$$

$$\tilde{\Phi}(z,\zeta) = \tilde{g}(z,\zeta)Q(z,\zeta) \text{ on } \Delta_{\frac{r}{2}}.$$

LEMMA 5. [1] For each s > -1, there is a smooth form $\eta_s \in C^{\infty}(\tilde{\Omega} \times \tilde{\Omega})$ such that

(i) $\eta_s(z,\zeta)$ is holomorphic in z on $\tilde{\Omega}$ for any fixed $\zeta \in \tilde{\Omega}$, and

(ii) for $f \in A_s^1(\Omega)$ and $z \in \Omega$ we have

$$f(z) = \int_{\Omega} f(\zeta) \frac{\eta_s(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} \ (-\rho(\zeta))^s \ dV(\zeta).$$

LEMMA 6. Let s > -1 and m be a non-negative integer. Then for $f \in A^1_s$ we have the representation

$$f(z) = \sum_{j=0}^{m} \int_{\Omega} \mathcal{N}^{j} f(\zeta) \frac{\eta_{s+j}(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} (-\rho(\zeta))^{s+m} dV(\zeta).$$

PROOF. Let $\omega = |\partial \rho|^{-2} * \bar{\partial} \rho$ where * is the Hodge star operator. Then it follows that

(2)
$$\partial \rho \wedge \omega = |\partial \rho|^{-2} \partial \rho \wedge *\bar{\partial} \rho = |\partial \rho|^{-2} \langle \partial \rho, \partial \rho \rangle dV = dV.$$

Also for $g \in C^{\infty}(\Omega)$ we have

(3)
$$\partial g \wedge \omega = \partial g \wedge |\partial \rho|^{-2} * \bar{\partial} \rho = |\partial \rho|^{-2} \langle \partial g, \partial \rho \rangle dV = |\partial \rho|^{-2} \mathcal{N} g \ dV.$$

For the case of m = 1 we write

$$(-\rho)^{s}dV = -1/(s+1)\partial(-\rho)^{s+1} \wedge \omega$$

and apply Stokes' theorem. Then we have

$$f(z) = \int_{\Omega} f(\zeta) \frac{\eta_{s}(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} (-\rho(\zeta))^{s} dV(\zeta)$$

$$= -\int_{\Omega} f(\zeta) \frac{\eta_{s}(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} \partial(-\rho(\zeta))^{s} \wedge \omega$$

$$= \int_{\Omega} \partial f(\zeta) \frac{\eta_{s}(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} (-\rho(\zeta))^{s} \wedge \omega$$

$$+ \int_{\Omega} f(\zeta) \partial \left(\frac{\eta_{s}(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}}\right) (-\rho(\zeta))^{s} \wedge \omega$$

$$+ \int_{\Omega} f(\zeta) \frac{\eta_{s}(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} (-\rho(\zeta))^{s} \partial \omega.$$

We have

$$\partial_{\zeta} \left(\frac{\eta_s(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} \right) = \frac{\partial_{\zeta} \eta_s(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} - (n+s+1) \frac{\eta_s(z,\zeta)\partial_{\zeta} \tilde{\Phi}(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+2}}$$

and

$$\partial_{\zeta} \tilde{\Phi}(z,\zeta) \wedge \omega = |\partial \rho|^{-2} \mathcal{N} \ \tilde{\Phi}(z,\zeta) dV.$$

Since $\mathcal{N} \ \tilde{g}(z,\zeta) = \mathcal{O}(|z-\zeta|^2)$, we have

$$\left| \frac{\mathcal{N}\left[\tilde{\Phi}(z,\zeta) \right]}{\tilde{\Phi}(z,\zeta)} \right| \lesssim 1.$$

We calculate $\partial \omega$. We have

(5)
$$\partial \omega = \partial \left(\frac{1}{|\partial \rho|^2} \right) \wedge *\bar{\partial} \rho + \frac{1}{|\partial \rho|^2} \partial (*\bar{\partial} \rho) \\ = \mathcal{N} \left(\frac{1}{|\partial \rho|^2} \right) dV + \frac{1}{|\partial \rho|^2} \partial (*\bar{\partial} \rho).$$

We use the expression

$$*\bar{\partial}\rho = \sum_{j=1}^{n} \frac{1}{\sqrt{-1}} \frac{\partial \rho}{\partial \bar{\zeta}_{j}} d\bar{\zeta}_{j} \left(\frac{1}{2\sqrt{-1}}\right)^{n-1} \bigwedge_{\nu \neq j} (d\zeta_{\nu} \wedge d\bar{\zeta}_{\nu}).$$

Then we have

$$\partial(*\bar{\partial}\rho) = \sum_{j=1}^{n} \frac{1}{\sqrt{-1}} \frac{\partial^{2}\rho}{\partial\zeta_{j}\partial\bar{\zeta}_{j}} d\zeta_{j} \wedge d\bar{\zeta}_{j} \left(\frac{1}{2\sqrt{-1}}\right)^{n-1} \bigwedge_{\nu \neq j} (d\zeta_{\nu} \wedge d\bar{\zeta}_{\nu})$$

$$= \sum_{j=1}^{n} 2(-1)^{4(j-1)} \frac{\partial^{2}\rho}{\partial\zeta_{j}\partial\bar{\zeta}_{j}} \left(\frac{1}{2\sqrt{-1}}\right)^{n} \bigwedge_{\nu=1}^{n} (d\zeta_{\nu} \wedge d\bar{\zeta}_{\nu})$$

$$= \sum_{j=1}^{n} 2(-1)^{4(j-1)} \frac{\partial^{2}\rho}{\partial\zeta_{j}\partial\bar{\zeta}_{j}} \left(\frac{\sqrt{-1}}{2}\right)^{n} \bigwedge_{\nu=1}^{n} (d\zeta_{\nu} \wedge d\bar{\zeta}_{\nu})$$

$$= \sum_{j=1}^{n} 2(-1)^{4(j-1)} \frac{\partial^{2}\rho}{\partial\zeta_{j}\partial\bar{\zeta}_{j}} dV.$$

Thus we have

(7)
$$\partial \omega = \psi \ dV,$$

where

$$\psi = \mathcal{N}\left(\frac{1}{|\partial \rho|^2}\right) + \frac{1}{|\partial \rho|^2} \sum_{j=1}^n 2(-1)^{4(j-1)} \frac{\partial^2 \rho}{\partial \zeta_j \partial \bar{\zeta}_j} \in C^{\infty}(\bar{\Omega}).$$

Thus we get the result of the case m=1. By iteration of the above argument, we get the general case.

LEMMA 7. [7] Let $a \in \mathbb{R}, s > -1$, and let $\tilde{\Phi}(z, w)$ be the function defined in Lemma 4. Then

$$\int_{\Omega} \frac{|\rho(w)|^s}{|\tilde{\Phi}(z,w)|^{n+1+s+a}} dV(w) \sim \begin{cases} 1 & \text{if } a < 0 \\ 1/|\rho(z)|^a & \text{if } a > 0 \\ \log(1/|\rho(z)|) & \text{if } a = 0. \end{cases}$$

3. Proofs of main results

LEMMA 8. Let $f \in \mathcal{O}(\Omega)$ and 1 , <math>s > -1. Then for $z \in \Omega$

$$|\nabla f(z)|^p \lesssim \frac{1}{|\rho(z)|^{\varepsilon p}} \int_{\Omega} |f(w)|^p \frac{|\rho(w)|^s}{|\tilde{\Phi}(z,w)|^{n+s+1+(1-\varepsilon)p}} \, dV(w)$$

for some $\varepsilon > 0$.

PROOF. It follows from the reproducing property in Lemma 5 that

$$f(z) = \int_{\Omega} f(w) \frac{\eta(z, w)}{\tilde{\Phi}(z, w)^{n+s+1}} (-\rho(w))^s dV(w).$$

Thus we obtain, for the gradient in z,

$$|\nabla f(z)| = \left| \int_{\Omega} f(w) \nabla \left(\frac{\eta(z, w)}{\tilde{\Phi}(z, w)^{n+s+1}} \right) (-\rho(w))^{s} dV(w) \right|$$

$$\lesssim \int_{\Omega} |f(w)| \frac{|\rho(w)|^{s}}{|\tilde{\Phi}(z, w)|^{n+s+2}} dV(w).$$

Using Hölder's inequality with exponents 1/p and 1/p' for p, p' > 1 and by Lemma 7, we have

$$\begin{split} |\nabla f(z)| &\lesssim \left(\int_{\Omega} |f(w)|^p \frac{|\rho(w)|^s}{|\tilde{\Phi}(z,w)|^{n+s+1+(1-\varepsilon)p}} \, dV(w)\right)^{1/p} \\ &\times \left(\int_{\Omega} \frac{|\rho(w)|^s}{|\tilde{\Phi}(z,w)|^{n+s+1+\varepsilon p'}} \, dV(w)\right)^{1/p'} \\ &\lesssim \frac{1}{|\rho(z)|^\varepsilon} \left(\int_{\Omega} |f(w)|^p \frac{|\rho(w)|^s}{|\tilde{\Phi}(z,w)|^{n+s+1+(1-\varepsilon)p}} \, dV(w)\right)^{1/p}. \end{split}$$

The lemma is proved.

LEMMA 9. Let $f \in \mathcal{O}(\Omega)$ and $1 < a \le p < \infty$, s > -1, then

$$M_p^a \left(t, \frac{\partial f}{\partial z_k} \right) \lesssim \frac{1}{t^{\epsilon a}} \int_0^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+a+1-\epsilon a}} M_p^a(\tau, f) d\tau$$

for some $\varepsilon > 0$.

PROOF. By Lemma 8, we have for $\zeta \in \partial \Omega$

$$\left| \frac{\partial f(\zeta_t)}{\partial z_k} \right|^p \le \left| \nabla f(\zeta_t) \right|^p$$

$$\lesssim \frac{1}{|\rho(\zeta_t)|^{\varepsilon p}} \int_{\Omega} |f(w)|^p \frac{|\rho(w)|^s}{|\tilde{\Phi}(\zeta_t, w)|^{n+s+1+p-\varepsilon p}} \, dV(w).$$

Using (8) and Minkowski's inequality imply

$$\begin{split} &M_{p}^{a}\left(t,\frac{\partial f}{\partial z_{k}}\right)\\ &=\left(\int_{\partial\Omega}\left|\frac{\partial f(\zeta_{t})}{\partial z_{k}}\right|^{p}\,d\sigma(\zeta)\right)^{a/p}\\ &\lesssim\left(\int_{\partial\Omega}\left(\frac{1}{|\rho(\zeta_{t})|^{\varepsilon a}}\int_{\Omega}|f(w)|^{a}\frac{|\rho(w)|^{s}}{|\tilde{\Phi}(\zeta_{t},w)|^{n+s+1+a-\varepsilon a}}\,dV(w)\right)^{p/a}\,d\sigma(\zeta)\right)^{a/p}\\ &\lesssim\frac{1}{t^{\varepsilon a}}\int_{\Omega}\left(\int_{\partial\Omega}|f(w)|^{p}\frac{|\rho(w)|^{s\cdot p/a}}{|\tilde{\Phi}(\zeta_{t},w)|^{(n+s+1+a-\varepsilon a)p/a}}\,d\sigma(\zeta)\right)^{a/p}\,dV(w)\\ &=\frac{1}{t^{\varepsilon a}}\int_{\Omega}|f(w)|^{a}|\rho(w)|^{s}\left(\int_{\partial\Omega}\frac{1}{|\tilde{\Phi}(\zeta_{t},w)|^{(n+s+1+a-\varepsilon a)p/a}}\,d\sigma(\zeta)\right)^{a/p}\,dV(w). \end{split}$$

Using the fact $p \geq a$ and the definition of $\tilde{\Phi}$, we have

$$\begin{split} &M_p^a \Big(t, \frac{\partial f}{\partial z_k} \Big) \\ &\lesssim \frac{1}{t^{\varepsilon a}} \int_{\Omega} |f(w)|^a |\rho(w)|^s \Big(\int_{\partial \Omega} \frac{1}{|\tilde{\Phi}(\zeta_t, w)|^{n+s+1+a-\varepsilon a}} \, d\sigma(\zeta) \Big) dV(w) \\ &= \frac{1}{t^{\varepsilon a}} \int_0^{\delta_0} \int_{\partial \Omega} |f(\eta_\tau)|^a |\rho(\eta_\tau)|^s \, d\sigma(\eta) \, d\tau \\ &\quad \times \int_{\partial \Omega} \frac{1}{|\tilde{\Phi}(\zeta_t, \eta_\tau)|^{n+s+1+a-\varepsilon a}} \, d\sigma(\zeta) \\ &\lesssim \frac{1}{t^{\varepsilon a}} \int_0^{\delta_0} \int_{\partial \Omega} |f(\eta_\tau)|^a |\rho(\eta_\tau)|^s \, d\sigma(\eta) \, d\tau \\ &\quad \times \int_{\partial \Omega} \frac{1}{\left(\rho(\zeta_t) + \rho(\eta_\tau) + |\zeta_t - \eta_\tau|^2\right)^{n+s+1+a-\varepsilon a}} \, d\sigma(\zeta). \end{split}$$

Applying the change of coordinates and Hölder's inequality, we obtain

$$\begin{split} M_p^a\Big(t,\frac{\partial f}{\partial z_k}\Big) &\lesssim \frac{1}{t^{\varepsilon a}} \int_0^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+1+a-\varepsilon a}} \int_{\partial\Omega} |f(\eta_\tau)|^a \, d\sigma(\eta) \, d\tau \\ &\lesssim \frac{1}{t^{\varepsilon a}} \int_o^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+a+1-\varepsilon a}} M_p^a(\tau,f) \, d\tau. \end{split}$$

This completes Lemma 9.

PROOF OF THEOREM 1. Suppose $|\alpha| = 1$. We first prove the following

 \Box

(9)
$$\int_0^{\delta_0} t^{a+b} M_p^a \left(t, \frac{\partial f}{\partial z_k} \right) dt \lesssim \int_0^{\delta_0} t^b M_p^a(t, f) dt.$$

If $a \le p$, taking s > b in Lemma 9, we have from Lemma 9

$$\begin{split} & \int_0^{\delta_0} t^{a+b} M_p^a \Big(t, \frac{\partial f}{\partial z_k} \Big) \, dt \\ & \lesssim \int_0^{\delta_0} t^{a+b} \Big(\frac{1}{t^{\varepsilon a}} \int_o^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+a+1-\varepsilon a}} M_p^a(\tau,f) \, d\tau \Big) \, dt \\ & = \int_0^{\delta_0} \tau^s M_p^a(\tau,f) \Big(\int_o^{\delta_0} \frac{t^{a+b-\varepsilon a}}{(t+\tau)^{s+a+1-\varepsilon a}} \, dt \Big) \, d\tau \end{split}$$

for some $\varepsilon > 0$. Integrating the right side of inequality, we get the result of the case $a \leq p$.

Now let a > p. By Lemma 9, we have

$$M_p^p\left(t, \frac{\partial f}{\partial z_k}\right) \lesssim \frac{1}{t^{\varepsilon p}} \int_0^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+p+1-\varepsilon p}} M_p^p(\tau, f) d\tau.$$

Thus we get, by Hölder inequality,

$$\begin{split} &M_p^a\Big(t,\frac{\partial f}{\partial z_k}\Big)\\ &\lesssim \frac{1}{t^{\varepsilon a}}\left(\int_o^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+p+1-\varepsilon p}} M_p^p(\tau,f)\,d\tau\right)^{a/p}\\ &\lesssim \frac{1}{t^{\varepsilon a}}\left(\int_o^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+p+1-\varepsilon p}} M_p^a(\tau,f)\,d\tau\right)\\ &\times \left(\int_0^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+p+1-\varepsilon p}} d\tau\right)^{(a-p)/p}\\ &\lesssim \frac{1}{t^{a-(1-\varepsilon)p}} \int_o^{\delta_0} \frac{\tau^s}{(t+\tau)^{s+p+1-\varepsilon p}} M_p^a(\tau,f)\,d\tau. \end{split}$$

П

Taking s > b we have

$$\int_0^{\delta_0} t^{a+b} M_p^a \Big(t, \frac{\partial f}{\partial z_k} \Big) dt \lesssim \int_0^{\delta_0} \tau^b M_p^a(\tau, f) d\tau.$$

Thus we get the result of the case a > p.

For $|\alpha| = 2$, using (9) twice gives

$$\int_0^{\delta_0} t^{2a+b} M_p^a \left(t, \frac{\partial^2 f}{\partial z_j \partial z_k} \right) dt \lesssim \int_0^{\delta_0} t^{a+b} M_p^a \left(t, \frac{\partial f}{\partial z_k} \right) dt$$

$$\lesssim \int_0^{\delta_0} t^b M_p^a(t, f) dt.$$

The general case can be proved by induction.

PROOF OF THEOREM 2. By Lemma 6, we have for a non-negative integer q and $z \in \Omega$

$$f(z) = \sum_{j=0}^{m} \int_{\Omega} \mathcal{N}^{j} f(\zeta) \frac{\eta_{s+j}(z,\zeta)}{\tilde{\Phi}(z,\zeta)^{n+s+1}} (-\rho(\zeta))^{s+m} dV(\zeta).$$

Using Hölder's inequality for $1/p+1/p'=1,\ p,p'>1$ and for some $\varepsilon>0$ we have

$$\begin{split} |f(z)| &\lesssim \sum_{j=0}^{m} \int_{\Omega} |\mathcal{N}^{j} f(\zeta)| |\rho(\zeta)|^{m} \frac{|\rho(\zeta)|^{s}}{|\tilde{\Phi}(z,\zeta)|^{n+s+1+\varepsilon-\varepsilon}} \, dV(\zeta) \\ &= \sum_{j=0}^{m} \int_{\Omega} \frac{|\mathcal{N}^{j} f(\zeta)| |\rho(\zeta)|^{m}}{|\tilde{\Phi}(z,w)|^{-\varepsilon}} \frac{1}{|\tilde{\Phi}(z,\zeta)|^{\varepsilon}} \frac{|\rho(\zeta)|^{s}}{|\tilde{\Phi}(z,\zeta)|^{n+s+1}} \, dV(\zeta) \\ &\lesssim \sum_{j=0}^{m} \left(\int_{\Omega} \frac{|\mathcal{N}^{j} f(\zeta)|^{p} |\rho(\zeta)|^{mp}}{|\tilde{\Phi}(z,w)|^{-\varepsilon p}} \frac{|\rho(\zeta)|^{s}}{|\tilde{\Phi}(z,\zeta)|^{n+s+1}} \, dV(\zeta) \right)^{1/p} \\ &\times \left(\int_{\Omega} \frac{1}{|\tilde{\Phi}(z,\zeta)|^{\varepsilon p'}} \frac{|\rho(\zeta)|^{s}}{|\tilde{\Phi}(z,\zeta)|^{n+s+1}} \, dV(\zeta) \right)^{1/p'} \\ &= \sum_{j=0}^{m} \left(\int_{\Omega} \frac{|\mathcal{N}^{j} f(\zeta)|^{p} |\rho(\zeta)|^{mp+s}}{|\tilde{\Phi}(z,\zeta)|^{n+s+1-\varepsilon p}} \, dV(\zeta) \right)^{1/p} \\ &\times \left(\int_{\Omega} \frac{|\rho(\zeta)|^{s}}{|\tilde{\Phi}(z,\zeta)|^{\varepsilon p'+n+s+1}} \, dV(\zeta) \right)^{1/p'}. \end{split}$$

By Lemma 7, we obtain

$$(10) |f(z)|^p \lesssim \int_{\Omega} \frac{|\mathcal{N}^j f(\zeta)|^p |\rho(\zeta)|^{mp+s}}{|\tilde{\Phi}(z,\zeta)|^{n+s+1-\varepsilon p}} \, dV(\zeta) \times \frac{1}{|\rho(z)|^{\varepsilon p}}.$$

Then the integral mean has the following inequality by (10)

$$\begin{split} &\int_{0}^{\delta_{0}} t^{b} M_{p}^{a}(t,f) \, dt \\ &= \int_{0}^{\delta_{0}} t^{b} \left(\int_{\partial\Omega} |f_{t}(z)|^{p} d\sigma(z) \right)^{a/p} \, dt \\ &\lesssim \sum_{j=0}^{m} \int_{0}^{\delta_{0}} t^{b} \\ &\times \left(\int_{\partial\Omega} \left(\int_{\Omega} \frac{|\mathcal{N}^{j} f(\zeta)|^{a} |\rho(\zeta)|^{ma+s}}{|\tilde{\Phi}(z_{t},\zeta)|^{n+s+1-\varepsilon a}} dV(\zeta) \frac{1}{|\rho(z_{t})|^{\varepsilon a}} \right)^{p/a} d\sigma(z) \right)^{a/p} \, dt \\ &= \sum_{j=0}^{m} \int_{0}^{\delta_{0}} \frac{t^{b}}{t^{\varepsilon a}} \\ &\times \left(\int_{\partial\Omega} \left(\int_{0}^{\delta_{0}} \int_{\partial\Omega} \frac{|\mathcal{N}^{j} f(\zeta_{\tau})|^{a} |\rho(\zeta_{\tau})|^{ma+s}}{|\tilde{\Phi}(z_{t},\zeta_{\tau})|^{n+s+1-\varepsilon a}} \, d\sigma(\zeta) \, d\tau \right)^{p/a} d\sigma(z) \right)^{a/p} \, dt \\ &\lesssim \sum_{j=0}^{m} \int_{0}^{\delta_{0}} \frac{t^{b}}{t^{\varepsilon a}} \int_{0}^{\delta_{0}} \\ &\times \left(\int_{\partial\Omega} \left(\int_{\partial\Omega} \frac{|\mathcal{N}^{j} f(\zeta_{\tau})|^{a} \, \tau^{ma+s}}{|\tilde{\Phi}(z_{t},\zeta_{\tau})|^{n+s+1-\varepsilon a}} \, d\sigma(\zeta) \right)^{p/a} d\sigma(z) \right)^{a/p} \, d\tau \, dt \\ &= \sum_{j=0}^{m} \int_{0}^{\delta_{0}} \frac{t^{b}}{t^{\varepsilon a}} \int_{0}^{\delta_{0}} \tau^{ma+s} \\ &\times \left(\int_{\partial\Omega} \left(\int_{\partial\Omega} \frac{|\mathcal{N}^{j} f(\zeta_{\tau})|^{a}}{|\tilde{\Phi}(z_{t},\zeta_{\tau})|^{n+s+1-\varepsilon a}} \, d\sigma(\zeta) \right)^{p/a} d\sigma(z) \right)^{a/p} \, d\tau \, dt. \end{split}$$

Using Minkowski's inequality and Lemma 7 again, the integral in the brace of the right side inequality is for $a \leq p$

$$\left(\int_{\partial\Omega} \left(\int_{\partial\Omega} \frac{|\mathcal{N}^{j} f(\zeta_{\tau})|^{a}}{|\tilde{\Phi}(z_{t}, \zeta_{\tau})|^{n+s+1-\varepsilon a}} \, d\sigma(\zeta) \right)^{p/a} \, d\sigma(z) \right)^{a/p}$$

$$\lesssim \int_{\partial\Omega} \left(\int_{\partial\Omega} \frac{|\mathcal{N}^{j} f(\zeta_{\tau})|^{p}}{|\tilde{\Phi}(z_{t}, \zeta_{\tau})|^{(n+s+1-\varepsilon a)p/a}} \, d\sigma(z) \right)^{a/p} \, d\sigma(\zeta)$$

$$\lesssim \int_{\partial\Omega} |\mathcal{N}^{j} f(\zeta_{\tau})|^{a} \left(\int_{\partial\Omega} \frac{1}{|\tilde{\Phi}(z_{t}, \zeta_{\tau})|^{n+s+1-\varepsilon a}} \, d\sigma(z) \right) \, d\sigma(\zeta)$$

$$\lesssim \frac{1}{(t+\tau)^{s+1-\varepsilon a}} \int_{\partial\Omega} |\mathcal{N}^{j} f(\zeta_{\tau})|^{a} d\sigma(\zeta).$$

Then we obtain

$$\int_{0}^{\delta_{0}} t^{b} M_{p}^{a}(t, f) dt$$

$$\lesssim \sum_{j=0}^{m} \int_{0}^{\delta_{0}} \frac{t^{b}}{t^{\varepsilon a}} \left(\int_{0}^{\delta_{0}} \frac{\tau^{ma+s}}{(t+\tau)^{s+1-\varepsilon a}} \left(\int_{\partial \Omega} |\mathcal{N}^{j} f(\zeta_{\tau})|^{a} d\sigma(\zeta) \right) d\tau \right) dt$$

$$\lesssim \sum_{j=0}^{m} \int_{0}^{\delta_{0}} \frac{t^{b}}{t^{\varepsilon a}} \left(\int_{0}^{\delta_{0}} \frac{\tau^{ma+s}}{(t+\tau)^{s+1-\varepsilon a}} M_{p}^{a}(\tau, \mathcal{N}^{j} f) d\tau \right) dt.$$

Therefore the straight calculation for the right side inequality completes the proof. \Box

References

- F. Beatrous, L^p estimates for extensions of holomorphic functions, Michigan Math. J. 32 (1985), 361-380.
- [2] _____, Estimates for Derivatives of Holomorphic Functions in Pseudoconvex Domains, Math. Z. 191 (1986), 91-116.
- [3] H. R. Cho, Estimates on the mean growth of H^p functions in convex domains of finite type, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2393–2398.
- [4] H. R. Cho and E. G. Kwon, Sobolev-type embedding theorems for harmonic and holomorphic Sobolev spaces, J. Korean Math. Soc. 40 (2003), no. 3, 435-445.
- [5] _____, Growth rate of the functions in Bergman type spaces, J. Math. Anal. Appl. 285 (2003), 275-281.
- [6] P. L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- M. M. Peloso, Hankel operators on weighted Bergman spaces on strongly domains, Illinois J. Math. 38 (1994), no. 2, 223-249.
- [8] R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, Berlin, 1986.
- [9] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of Cⁿ, Trans. Amer. Math. Soc. 328 (1991), no. 2, 619–637.

Hong Rae Cho Department of Mathematics Pusan National University Pusan 609-735, Korea E-mail: chohr@pusan.ac.kr Jinkee Lee Department of Mathematics Education Andong National University Andong 760-749, Korea E-mail: jinkeelee@hanmail.net