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INEQUALITIES FOR THE INTEGRAL MEANS
OF HOLOMORPHIC FUNCTIONS IN THE
STRONGLY PSEUDOCONVEX DOMAIN

HonG RAE CHO AND JINKEE LEE

ABSTRACT. We obtain the following two inequalities on a strongly
pseudoconvex domain Q in C™ : for f € O(Q)
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In [9], Shi proved these results for the unit ball in C™. These are
generalizations of some classical results of Hardy and Littlewood.

1. Introduction and statement of results

Let © be a bounded, strongly pseudoconvex domain in C" with
smooth boundary and p be a defining function for 2. We let dV de-
note the Lebesgue measure on 2 and do denote the surface measure on
the boundary 9 of Q. By O({) we denote the class of all functions
holomorphic in Q. For s > —1, let L? be the LP-space LP(Q,dV;), where
dVs = (—p)*dV. We denote by A% the space of all holomorphic func-
tions in L%, and we define A? ; to be the usual Hardy class consisting of
holomorphic functions with boundary values in L? ;. The integral means
My(r, f) of f, 0 < p < 00, are defined by
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Let N be a real vector field in a neighborhood of 02 which agrees with
the outward unit normal vector field on 9Q. For z € 0 and t > 0
sufficiently small, say 0 < t < dp, the integral curve of N through z has
a unique intersection point with the hypersurface {§ = t}. We call this
intersection point z;. For any function f on Q we define f; on 92 by
ft(z) = f(z) for z € AN

For f € O(Q), denote

glol
(Df)(2) = W(z)

Let N be the complex normal vector field of type (1,0) defined by
“~ 0p 0
N = —-
; 9¢; 0
The main results of this paper are the following two theorems.

THEOREM 1. Let f € O(Q)), 1 < p < o0 and =1 < b < oo and
0 <a < oo. Then

do 8o
/O telel+bare(t, D fydt < /O tPM2(t, f) dt.
THEOREM 2. Let f € O(2),1 <a<p<ooand -1 <b < oco. Then

do m do N
/0 PM2(E, f)dt S Z/O gamb pre (t,N9f> dt.
=0

COROLLARY 3. Let m be a positive integer and f € O(Q1). Then
feLlP1<p< oo, if and only if §(2)™"D*f(z) € LP for all o« with
|| = m.

ProoF. Let 0 < j < m. In [CK1], we proved that there is a compact
subset K of €2 such that

/ §()™P|VI F(¢)PdV < / 8(¢)mHVP|ZIHL £(C)PAV +sup |V fIP.
Q\K O\K K

Thus we get the result by Theorems 1 and 2. U

Here we use the notation A < B for the two expressions A and B
which means that there is a constant C, independent of the quantities
under consideration, such that A < C-B. When A < B and B < A, we
use the notation A ~ B.

These two theorems generalize the classical results of Hardy- Little-
wood (see [6]) to the strongly pseudoconvex domain of C". In case of
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the unit ball, see Theorems 1 and 2 in [9]. In [3] and [5], we can see
other cases of Hardy-Littlewood type inequalities in bounded domains
in C™.

2. Notations and some technical results
Let Q be a C*°-bounded strongly pseudoconvex domain with the

defining function p. We need some results for our proofs. See [1], [2]
and [8] in detail. We let g(z, () be the associated Levi polynomial

P N
g(z,C)—2;5§(C)( Z %3@ = 2)(G ~ 2).

It follows from Taylor’s formula and the strict plurisubharmonicity of p
that there are positive constants C; and 7 and a neighborhood Q' of Q
such that

Re g(2,¢) 2 p(¢) — p(2) + Cilz ~ ¢
for z,¢ € Q and |z — ¢| < r. Setting §(z,¢) = g(z,¢) — 2p(¢), it follows
that
(1) Re§(z¢) =Re g(2,¢) = 2p(¢) = =p(¢) = p(2) + Cilz — ([

for z,¢ € Q and |z — ¢| < 7 and §(2,¢) = g(z,¢) for ¢ € 8. Also we
have

N §(2,¢) = O(lz = ¢[*).

LEMMA 4. (1] Let g, ', r and Oy be as above. There is a neighbor-
hood Q of Q with Q0 D ', a C* function ® on Q x Q, and a positive
constant Cy such that

(i) for any ¢ € Q the function é(-, () is holomorphic on Q;

(ii) ®(¢,¢) = —2p(C) for ¢ € Q, and |®(z,¢)| > Cy for 2, € Q with
|z~ ¢l =55
(iii) there is a non-vanishing C* function Q(z,¢) on

Ar={(z0) eQxQ:]z~( < g} such that

B(2,¢) = §(2,0)Q(2,¢) on A

_ LeEmMA 5. [1] For each s > —1, there is a smooth form ns € C>®(Q x
Q) such that

(i) ns(z,¢) is holomorphic in z on § for any fixed { € Q, and
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(ii) for f € AL(Q) and z € §) we have

e = [ 1052 0y v o)

LEMMA 6. Let s > —1 and m be a non-negative integer. Then for
fe A1 we have the representation

f(z) = Z / NIF(Q) "jﬂgz ) (o) av(e).

n+s+1

PROOF. Let w = |0p|~2 * Op where * is the Hodge star operator.
Then it follows that

(2) dp Aw = |0p|?0p A x0p = |0p|~*(0p, Bp)dV = dV.
Also for g € C*°(Q2) we have
(3)  BgAw=08gAI[8p|™% * Bp = |0p|~*(Bg, Ip)dV = [8p| N g aV.
For the case of m =1 we write
(—p)*dV = —1/(s + 1)0(—p)* ! Aw

and apply Stokes’ theorem. Then we have

)= [ 1052 WH( P(Q)* AV (Q)
- [ f(o—(ﬁ(i‘)—— B(=p())° nw

z C)n+s+1

(4) = [arc¢ )WH (=p(©))* A

+ [ 10w ( e) ooy ae

/ 700 pieyaw,

(I)( Cn+s+1
We have
ns(2,¢) >_ 9cns(2,€) 1s(2,)0: ®(2, ()
% (é<z,<>n+s+1 = B TR s
and

0c®(2,0) Aw = |0p| 2N &(2,¢)dV.
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Since N g(z,¢) = O(]z — ¢|*), we have

~<z,<),<1

&(z,()

We calculate dw. We have
1 _
Ow =0 ([3 |2>/\>|<(9,0-i—'(9 2 9(x0p)
_N<|8 P)dV—i—la B d(x0p).

We use the expression

- n 1 ap - 1 n—1
*ap = ]gl _\/—__—15?]‘14‘] (2\/_—1> /\ (dCV A dCV)

v#]

(5)

Then we have

1 3 p 1 n—1 _
Z NS dC] A dg; (2—\/—:1> N (¢ A dé)

vt
222(__1)4(1'-1) 8%p § /”\ (o A dE)
; 8¢;0¢; MR

1
a n
4( 1) p
—Z i- a<j6€j< . ) /:\dCl,/\dCV

&p
— 2(— 1)46-V_ZF_av
Z b 6@8(]
Thus we have

(7) dw =1 dV,

where
1 « o2 _
N 29— 4(_7 H_Yro p c C°(Q)).
V= <|6p12)+rap|2§; U geg €T

Thus we get the result of the case m = 1. By iteration of the above
argument, we get the general case. O
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LEMMA 7. [7] Let a € R,s > —1, and let ®(z,w) be the function
defined in Lemma 4. Then

1 if a<0

R vy~ 1/l i a0
/QWZ’“’)'"*””"' log(1/|p(2)])  if a=0.

3. Proofs of main results

LEMMA 8. LethO )and 1 <p < oo, s> —1. Then for z € Q

lo(w)]?
VI & (i VO sy V)

for some ¢ > 0.

PRrROOF. It follows from the reproducing property in Lemma 5 that

/f <I>( wn+)s+1( —p(w))* dV (w).

Thus we obtain, for the gradlent in z,

V7 = [ 1009 (G2 ) oty V)

)ls
/ |f(w I(I) w)[nts+2 v (w).

Using Holder’s inequality with exponents 1/p and 1/p’ for p,p’ > 1 and
by Lemma 7, we have

V56 5 (| 1P G b )

w)|n+s+1+(1—s)p

% </Q |<i>(z,1i1[1))(|q:n)LLs+1+sp’ dV(w))I/pl

1 |p(w)]* 1/p
S lp(2)¢ (/Q 'f(w)'p|<i)(z,w)|n+s+1+(1—s)p dV(w)) )

The lemma is proved. O

LEMMA 9. Let f € O(Q) and 1 <a <p < oo, s> —1, then

8]" do s .
) EEE/O (t+T)5+a+1—eaMP(T’ frar

Ma( " Oz

for some € > 0.
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PrOOF. By Lemma 8, we have for { € 02

of( Ct)l _'Vf Ct‘

lo(w)®
(8) S lo(¢e) lep/ |f(w I(I)(Ct )|ptstitp—ep dv (w).

Using (8) and Minkowski’s inequality imply

8f>

MS (t, o
0f (<)

B </an Oz pda(o>a/p

s a a/p
: </<99 |P(Ct)|w/ 1# )’alé(g |/))|(n+)s‘+1+a —ea dV(w)>p/ d"(C))

sp/a a/p
S ([ ip= L do()" avw)

I (Ct )I (n+s+1+a—ea)p/a

a s 1 a/p
= gz | @l ( [ e e do(©)) " aV ().

Using the fact p > a and the definition of <I>, we have

0
53
S / ettt ([ 4ot V)

8o
- tea / |f(77¢ l lp('f?r ls dU( )dT

1
F d
" /aa B(cmrreriras 270

do
Sz | [ 1tmriet )l ot dr

* /BQ ( 1 )n+s+1+a—aa dU(C)‘

p(Ce) + p(ne) + ¢ — 0 f?
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Applying the change of coordinates and Hélder’s inequality, we obtain

oo s
M (1 50) < i | e [ Mo dotaar

1 o 78 .
S fe , (t+ 7—)s+a+1-eanD (r, f)dr
This completes Lemma 9. g

PROOF OF THEOREM 1. Suppose |a| = 1. We first prove the follow-
ing

(9) /0 t“+”M“( §i>dt</060th§(t,f)dt

If a < p, taking s > b in Lemma 9, we have from Lemma 9

) af
a+bypra
/O AHE 8zk>dt
éo 1 do s
+b
s [en(E | e ) i)

) oo ta+b—sa
_ S a
- /0 7 M2(r, f)(/o e t) dr

for some ¢ > 0. Integrating the right side of inequality, we get the result
of the case a < p.
Now let @ > p. By Lemma 9, we have

af 1 do 78
Mp( 8z ) ’S 55/0 (t+T)5+p+1——5ngI))(T; f) dr.

Thus we get, by Holder inequality,

M (5

1 da 78 a/p
tea (/o G5 e M f) dT)

< 1 & ° a
~ tea < o (t+ T)3+P+1-spjwp (1, 1) dT)

do 8 (a—p)/p
([ )

< 1 % 7° a
~ ta—(1—e)p /O (t + 7—)8+p+1—€pMP (7'7 f) dr.

IN
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Taking s > b we have

(50 60
/0 ta+bM;( of )dt< /0 T My(r, f)dr.

Oz,
Thus we get the rersult of the case a > p.
For |a] = 2, using (9) twice gives

atbysa °f atbyraf, OF
/0 2 +bM( 82]8%)(#5/0 t+”M( sz)

do
< / P M2 (t, f) dt.
0

The general case can be proved by induction. O

PROOF oF THEOREM 2. By Lemma 6, we have for a non-negative
integer g and z € Q

Z [ M OGRS oo avie)

Using Holder’s inequality for 1/p + 1/p' = 1, p,p’ > 1 and for some
€ > 0 we have

215 3. [ WO o s v 0

|@<z,c>ln+s+1+f-s

LG HP (o]
- Z/ |®(2,w)|~* ]@(z,()[f |&(z, ¢)|nts+1 av(¢)

NIEOPIOI™  1p(Q)f 1o
P <n S o T ope )

! PO v
x </n oo e o V)

([ INTFOIPp(Q)fmete 1/p
- Z< l(i’(z7g)'n+s+1—ep dV(C))

j=0 7%

(s g 9)

By Lemma 7, we obtain

NI FOPL(Q ™+ !
w ers B e VO L
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Then the integral mean has the following inequality by (10)

do b
[ emztepya

) a/p
= /0 2‘/b(/m|ft(2)|”d0(2)) ” at
m 8o

b

|Njf(<)|a|p(g)lma+s 1 p/a (s a/p
. (/BQ( Q l(i)(zt’c)ln-}—s-irl—ea av(c) lp(%)lea) dor( )) dt

N

m 8o tb
DA
VI F(&IlpGl™ ™ e >a/p
X( o o0 |®(z, ) ntstiea d (OdT> do(z)) dt

( / I F(G)|e Tmets 4o(0)

o ICI’(Zt C,,. ‘n+s+1 €a

m ‘50 tb 0

ma+s
- [Ef
j=0

NI )|* /a a/p
( 0 |q) th CJ;|(§+2!|-{-1 —ca dU(C))p da(z)) dr dt.

Using Minkowski’s inequality and Lemma 7 again, the integral in the
brace of the right side inequality is for a < p

NI F(G)I a 0
R R = O) RO
NIF(EHIP a/p
& /89 </ag |<i>(zt,|(7)j|(fn(fslll—ea)p/a da(z)) / do(¢)

. N 1
s [ W (| g ) 00
1 j a
N m—;)—ﬂt‘a/m W? £(¢r)|%da (C).

SN
Se—’
2
2
2
X
[
~—
S——
=
3
U
I




Inequalities for the integral means of holomorphic functions 349

Then we obtain

&o .
/0 M2t ) dt

m

<3[R ([ e ([ worcoras() ar) a

=0

m o pdo 4b do Fma+ts . )
Z/o EE(/O ——————(t+T)s+1_EaMp(T,N’f) dT) dt.

j=0

IN

Therefore the straight calculation for the right side inequality completes

the proof. O
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