DOI QR코드

DOI QR Code

SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP

  • CHEN BANG-YEN (Department of Mathematics Michigan State University) ;
  • CHOI MIEKYUNG (Department of Mathematics Kyungpook National University) ;
  • KIM YOUNG HO (Department of Mathematics Kyungpook National University)
  • Published : 2005.05.01

Abstract

In this article, we introduce the notion of pointwise 1-type Gauss map of the first and second kinds and study surfaces of revolution with such Gauss map. Our main results state that surfaces of revolution with pointwise 1-type Gauss map of the first kind coincide with surfaces of revolution with constant mean curvature; and the right cones are the only rational surfaces of revolution with pointwise 1-type Gauss map of the second kind.

Keywords

References

  1. C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasg. Math. J. 34 (1992), 355-359 https://doi.org/10.1017/S0017089500008946
  2. C. Baikoussis, B. Y. Chen, and L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16 (1993), 341-348 https://doi.org/10.3836/tjm/1270128488
  3. B. Y. Chen, Finite type submanifolds and generalizations, University of Rome, 1985
  4. B. Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific Publ. New Jersey, 1984
  5. B. Y. Chen and S. Ishikawa, On classification of some surfaces of revolution of finite type, Tsukuba J. Math. 17 (1993), 287-298
  6. B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), 161-186 https://doi.org/10.1017/S0004972700013162
  7. M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), 753-761
  8. Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000), 85-96
  9. Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), 191-205 https://doi.org/10.1016/S0393-0440(99)00063-7
  10. J. Oprea, Differential geometry and its applications, Prentice Hall, New Jersey, 1997

Cited by

  1. FLAT ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN E4 vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.305
  2. SURFACES WITH POINTWISE 1-TYPE GAUSS MAP vol.18, pp.4, 2011, https://doi.org/10.7468/jksmeb.2011.18.4.369
  3. SURFACES IN $\mathbb{E}^3$ WITH L1-POINTWISE 1-TYPE GAUSS MAP vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.935
  4. Vranceanu surface in % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39ga % iyaacqWFecFrdaahaaWcbeqaaGqaaiab+rda0aaaaaa!47D0! $$ \mathbb{E}^4 $$ with pointwise 1- type Gauss map vol.42, pp.1, 2011, https://doi.org/10.1007/s13226-011-0003-y
  5. Invariant surfaces with pointwise 1-type Gauss map in Sol3 vol.106, pp.3, 2015, https://doi.org/10.1007/s00022-015-0261-7
  6. BOOST INVARIANT SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN MINKOWSKI 4-SPACE E41 vol.51, pp.6, 2014, https://doi.org/10.4134/BKMS.2014.51.6.1863
  7. Helicoidal surfaces satisfying $${\Delta ^{II}\mathbf{G}=f(\mathbf{G}+C)}$$ Δ II G = f ( G + C ) vol.107, pp.3, 2016, https://doi.org/10.1007/s00022-015-0284-0
  8. SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP IN PSEUDO-GALILEAN SPACE vol.53, pp.2, 2016, https://doi.org/10.4134/BKMS.2016.53.2.519
  9. SURFACES WITH POINTWISE 1-TYPE GAUSS MAP OF THE SECOND KIND vol.19, pp.3, 2012, https://doi.org/10.7468/jksmeb.2012.19.3.229
  10. Spacelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 1 4 ${E^{4}_{1}}$ with Pointwise 1-Type Gauss Map vol.17, pp.1-2, 2014, https://doi.org/10.1007/s11040-014-9153-6
  11. Quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map in pseudo-Euclidean 4-space vol.106, 2016, https://doi.org/10.1016/j.geomphys.2016.03.023
  12. SHAPE OPERATOR AND GAUSS MAP OF POINTWISE 1-TYPE vol.52, pp.6, 2015, https://doi.org/10.4134/JKMS.2015.52.6.1337
  13. CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP vol.50, pp.4, 2013, https://doi.org/10.4134/BKMS.2013.50.4.1345
  14. Classifications of Canal Surfaces with L1-Pointwise 1-Type Gauss Map vol.83, pp.1, 2015, https://doi.org/10.1007/s00032-015-0233-2
  15. HELICOIDAL SURFACES AND THEIR GAUSS MAP IN MINKOWSKI 3-SPACE vol.47, pp.4, 2010, https://doi.org/10.4134/BKMS.2010.47.4.859
  16. General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E 2 4 vol.46, pp.1, 2015, https://doi.org/10.1007/s13226-015-0112-0
  17. ON THE GAUSS MAP OF GENERALIZED SLANT CYLINDRICAL SURFACES vol.20, pp.3, 2013, https://doi.org/10.7468/jksmeb.2013.20.3.149
  18. MERIDIAN SURFACES IN 𝔼4WITH POINTWISE 1-TYPE GAUSS MAP vol.51, pp.3, 2014, https://doi.org/10.4134/BKMS.2014.51.3.911
  19. SURFACES OF REVOLUTION SATISFYING ΔIIG = f(G + C) vol.50, pp.4, 2013, https://doi.org/10.4134/BKMS.2013.50.4.1061
  20. GAUSS MAPS OF RULED SUBMANIFOLDS AND APPLICATIONS I vol.53, pp.6, 2016, https://doi.org/10.4134/JKMS.j150498
  21. FINITE TYPE OF THE PEDAL OF REVOLUTION SURFACES IN E3 vol.53, pp.4, 2016, https://doi.org/10.4134/JKMS.j150336
  22. TENSOR PRODUCT SURFACES WITH POINTWISE 1-TYPE GAUSS MAP vol.48, pp.3, 2011, https://doi.org/10.4134/BKMS.2011.48.3.601
  23. ON SPACELIKE ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP vol.52, pp.1, 2015, https://doi.org/10.4134/BKMS.2015.52.1.301
  24. Rotational hypersurfaces with $L_r$-pointwise 1-type Gauss map vol.36, pp.3, 2018, https://doi.org/10.5269/bspm.v36i3.31263
  25. Isometric Deformation of (m,n)-Type Helicoidal Surface in the Three Dimensional Euclidean Space vol.6, pp.11, 2018, https://doi.org/10.3390/math6110226
  26. Extension of Eigenvalue Problems on Gauss Map of Ruled Surfaces vol.10, pp.10, 2018, https://doi.org/10.3390/sym10100514
  27. The Gauss Map and the Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space vol.10, pp.9, 2018, https://doi.org/10.3390/sym10090398
  28. Hypersurfaces with Generalized 1-Type Gauss Maps vol.6, pp.8, 2018, https://doi.org/10.3390/math6080130
  29. Gauss Map and Its Applications on Ruled Submanifolds in Minkowski Space vol.10, pp.6, 2018, https://doi.org/10.3390/sym10060218
  30. Classifications of Flat Surfaces with Generalized 1-Type Gauss Map in $${\mathbb L}^{3}$$L3 vol.15, pp.3, 2018, https://doi.org/10.1007/s00009-018-1123-y