배추 조건에 따른 사질토 지반의 동적 변형특성

Dynamic Deformation Characteristics of Sands Under Various Drainage Conditions

  • 추연욱 (한국과학기술원, 건설 및 환경공학과) ;
  • 김동수 (한국과학기술원, 건설 및 환경공학과)
  • 발행 : 2005.04.01

초록

본 논문에서는 포화 및 배수 조건에 따른 사질토 지반의 변형특성을 개선된 Stokoe식 비틂전단시험기를 이용하여 비교$\cdot$관찰하였다. 기존의 Stokoe식 비틀 전단 시험기를 개선하여 시료의 완전 포화상태를 만들고, 포화 배수 및 비배수 조건에서 비틂 전단 시험이 가능하도록 하였고, 또한, 비배수 시험에서 간극수압을 동시에 측정할 수 있도록 하였다. 국내에서 채취된 금강모래와 일본의 토요라 모래를 사용하여, 건조, 포화 배수 및 포화 비배수 조건, 3가지 간극비, 4가지 구속응력 조건을 달리하여 비틂전단시험을 수행하였다. 시험결과를 바탕으로, 전단탄성계수와 재료 감쇠비를 각 조건에 대하여 반복하중 및 변형률 크기의 영향을 비교$\cdot$분석하고, 배수 조건에 따라 다르게 나타나는 사질토 지반의 저변형률 (c) 및 중간 변형률 (${10}^{-3}\%<\gamma_c<{10}^{-1}\%$)에서의 변형특성을 관찰하였다.

In this study, dynamic deformation characteristics of sands under dry, saturated drained and undrained conditions were investigated at small to intermediate strains using the modified Stokoe-type torsional shear tests. The equipment was modified to saturate the specimen and to maintain the B-value above 0.99 during the test. On two types of sands, Geumgang sand from Korea and Toyoura sand from Japan, tests were carried out at various drainage conditions, void ratios, and effective confining pressures. Based on the test results, dynamic deformation characteristics, shear modulus (G) and damping ratio (D), and/or pore-water pressure were measured with strain amplitude and number of loading cycles. Variations of G and D at small ($\gamma_c<{10}^{-3}\%$) to medium (${10}^{-3}\%<\gamma_c<{10}^{-1}\%$) strains were measured under various drainage conditions, and test results were intensively compared considering drainage conditions.

키워드

참고문헌

  1. 김동수(1995), '공진주/비틂전단(RC/TS)시험을 이용한 건조사질토의 변형특성', 한국지반공학회 논문집, 제11권, pp.101-112
  2. 김동수, 추연욱 (2004), '간극수압증가와 동적변형특성 변화에 근거한 사질토 지반의 반복한계 전단변형률', 대한토목학회논문집, 제24권, 제3C호, pp.193-203
  3. Burland, J.B. (1989), 'Ninth Lauritis Bjerrum Memorial Lecture: 'Small is beautiful'- the stiffeness of soils at small strains', Canadian Geotech. Journal, 26, 499-516 https://doi.org/10.1139/t89-064
  4. Dobry, R., Ladd, R.S., Yokel, F.Y., Chung, R.M., and Powell, D. (1982), Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. National Bureau of Standards, Building Science Series 138, Washington. D.C
  5. Dobry, R., and Vucetic, M. (1987), 'State-of-the-art report: dynamic properties and response of soft clay deposits', Proc. Int. Symp. On Geotechnical Engineering of Soft Soils, Vol.2, pp.51-87
  6. Hardin, B.O. and Richart, F.E. Jr. (1963), 'Elastic wave velocities in granular soils', Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.89, No.1, pp.33-35
  7. Iwasaki, T., Tatsuoka, F. and Takagi, Y. (1978), 'Shear Moduli of Sands under Cyclic Torsional Shear Loading', Soils and Foundations, Vol.18, No.1, pp.39-56
  8. Ishihara, K. (1996), Soil Behaviour in Earthquake Geotechnics, Oxford University Press Unc., New York, pp.152-179
  9. Hwang, S.K. (1997), Dynamic Properties of Natural Soils, Ph.D Dissertation, The University of Texas at Austin
  10. Kim, D.S. (1991), Deformational Characteristics of Soils at Small to Intermediate Strains from Cyclic Tests, Ph.D Dissertation, The University of Texas at Austin
  11. Kim, D.S. and Stokoe, II, K.H. (1994), 'Torsional Motion Monitoring System for Small-Strain ($10^{-6}$ to $10^{-3}$%) Soil Testing', Geotechnical Testing Journal, Vol.17, No.1, pp.17-26
  12. Kokusho, T. (1980), 'Cyclic triaxial test of dynamic soil properties for wide strain range', Soils and Foundations, Vol.20, No.2, pp.45-60
  13. Lo Presti (1989), 'Proprieta dinamiche dei terreni', Proc. 14th Conf. Geotech. Turin
  14. Ni, S.H. (1987), Dynamic properties of sands under true triaxial stress states from resonant column/torsional shear tests, Ph. D. Dissertation, The University of Texas at Austin
  15. Richart, F.E., Hall, J.R., and Wood, R.D. (1970), Vibrations of Soils and Foundations, Prentice Hall, Englewood Cliffs
  16. Santamarina, J.C. and Cascante, G. (1996), 'Stress anisotropy and wave propagation: a micromechanical view', Canadian Geotechnical Journal, Vol.33, No.5, pp.770-782 https://doi.org/10.1139/t96-102-323
  17. Seed, H.B. and, Idriss, I.M. (1970), Soil moduli and damping factors for dynamic response analysis, Report No. UCBIEERC-70/10, University of California, Berkeley
  18. Stokoe, K.H., II, Hwang, S.K., Lee, J.N.-K., and Andrus, R.D. (1994), 'Effects of various parameters on the stiffness and damping of soils at small to medium strains', In Proceedings of the First International Conference on Pre-failure Deformation Characteristics of Geomaterials, Sapporo, Japan. Vol.2, pp.785-816
  19. Tatsuoka, F. and Shibuya, S. (1992), 'Engineering properties of soils and rocks from in-situ and laboratory tests, Key note lecture for session I', Proc. of 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Vol.2, pp.101-170
  20. Vucetic, M. and Dobry, R. (1991), 'Effect of soil plasticity on cyclic response', Journal of Geotechnical Engineering, ASCE, Vol.117, No.1, 89-107 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  21. Vucetic, M. (1994), 'Cyclic threshold shear strains in soils', Journal of Geotechnical Engineering, ASCE, Vol.120, No.12, pp.2208-2228 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2208)
  22. Wood, D.M. (1990), Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, New York, pp.37-46