인삼의 화분벽 발달에 관한 미세구조적 연구

Fine Structural Study of Pollen Wall Development at Late Stage of Microsporogenesis in Panax ginseng

  • 발행 : 2005.12.01

초록

인삼의 소포자 발달에 따라 화분벽의 형성과정을 밝히고자 소포자 4분자 시기부터 화분이 성숙되기까지의 전 과정을 투과 및 주사 전자현미경으로 관찰하였다. 화분벽의 발달은 감수분열이 끝나고 소포자 4분자가 callose에 둘러싸여 있을 때 시작된다. 화분벽 발달 초기에는 원형질막이 두터워지고 구불구불해지며 원형질막 바깥쪽에 섬유성 구조물이 나타나기 시작하고 이 섬유성 구조물은 점점 뚜렷하게 나타나고 premexine으로 발달한다. 원형질막의 함입으로 형성된 돌출부와 premexine이 연결되어 단간이 발달하고 성숙화분에서는 endexine에 일시적으로 흰색의 선이 관찰되었다. 표벽발달이 완료되면 hypertrophic Golgi에서 형성되는골지소낭에 의하여 내벽이 발달하고 발아구 부위에서는 내벽이 비후되어 나타났다. 성숙한 인삼화분은 3구형 화분으로서 약 $20{\mu}m$ 크기이며 표벽무늬는 세망상형을 나타내었다.

The ontogeny of pollen wall in Panax ginseng was studied with transmission and scanning electron microscopy from early tetrad stage until pollen maturity. Initial indication of exine development is undulation of plasma membrane for the preparation of bacular mound. The first recognizable structure of the pollen wall is the cellulosic primexine which is formed outside of the plasma membrane while microspore tetrads are still surrounded by callose wall. As development proceeds, foot-layer and baculum differentiation, callose dissolution and exine formation were progressed. During this process, sporopollenin is deposited into the exine, and then endexine development was followed. The intine, innermost pollen wall layer, is developing form hypertrophic Golgi vesicles. The thickness of exine is very even on all along the pollen wall, but intine thickness of apertural region is thicker than that of nonapertural region. Mature pollen of ginseng is $20{\mu}m$ in size, tricolpate and shows fine reticulate sculpturing.

키워드

참고문헌

  1. Bhojwani SS, Bhatnagar SP: The embryology of angiosperms. 4th edi. Vikas Publishing House. PVT. LTD. New Delhi. pp. 48-64, 1999
  2. Blackmore S, Barnes SH: Pollen wall development in angiosperms. In S. Blackmore and R.B. Knox (editor) Microspores : evolution and ontogeny, 173-192 Academic Press, London, 1990
  3. Dickinson HG, Potter U : The development of patterning in the alveolar sexine of Cosmos bipinnatus. New Phytol 76 : 543-550, 1976 https://doi.org/10.1111/j.1469-8137.1976.tb01490.x
  4. Echlin P, Godwin H: The ultrastructure and ontogeny of pollen in Helloborus foetidus L. III. The formation of the pollen grain wall. J Cell Sci 5 : 459-477, 1969
  5. El Ghazaly G, Huysmans S, Smets EF: Pollen development of Rondeletia odorata (Rubiaceae). Amer J Bot 88(1) : 14-30, 2001 https://doi.org/10.2307/2657122
  6. Heslop-Harrison J: Tapetal origin of pollen-coat substances in Lilium. New Phytologist 67 : 779-786, 1968 https://doi.org/10.1111/j.1469-8137.1968.tb06395.x
  7. Hess MW: Cell-wall development in freeze-fixed pllen : Intine formation of Ledebouria socialis (Hyacinthaceae). Planta 189 : 139-149, 1993
  8. Horner HT JR, Pearson CB: Pollen wall and aperture development in Helianthus annuus (Compositae: Heliantheae). Amer J Bot 65 : 251-257, 1978 https://doi.org/10.2307/2442264
  9. Kim MJ, Kim IS : Microsporogenesis of Hibiscus syriacus L. and its sporoderm differentiation. J plant Biol 38(1) : 95-105, 1995 (Korean)
  10. Kreunen SS, Osborn JM: Pollen and anther development in Nelubo (Nelumbonaceae). Ame J Bot 86(12) : 1662-1676, 1999 https://doi.org/10.2307/2656664
  11. Kreunen SS, Osborn JM: Pollen and anther development in Nelumbo (Nelumbonaceae). Am F Bot 86(12) : 1662-1676, 1999 https://doi.org/10.2307/2656664
  12. Kuang A, Musgrave ME, Matthews SW, Cummins DB, Tucker SC: Pollen and ovule development in Arabidopsis thaliana under space flight conditions. Amer J Bot 82(5) : 585-595, 1995 https://doi.org/10.2307/2445417
  13. Osborn JM, Taylor TN, Schneider EL: Pollen morphology and ultrastructure of the Cabombaceae : Correlations with pollination biology. Amer J Bot 78(10) : 1367-1378, 1991 https://doi.org/10.2307/2445275
  14. Owen HA, Makaroff CA: Ultrastructure of microsporgenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185 : 7-21, 1995 https://doi.org/10.1007/BF01272749
  15. Roland F: Characterization and extraction of the polysac-charides of the intine and of the generative cell wall in the pollen grain of some Ranunclaceae. Grana 11 : 101-106, 1971 https://doi.org/10.1080/00173137109429864
  16. Rowley JR: In situ pollen and spores in plant evolution : Exine origin, development and structure in pteridophytes, gymnosperms and angiosperms. Palynology 1 : 443-462, 1996
  17. Rowley JR, Dam AO, Rowter JS : Substructure in exines of Artemisia vulgaris (Asteraceae). Rev Palaeobot Palynol 35 : 1-38, 1981 https://doi.org/10.1016/0034-6667(81)90012-9
  18. Southworth D: Pollen exine substructure. III. Juniper communis. Can J Bot 64 : 983-987, 1985 https://doi.org/10.1139/b86-132
  19. Stafford PJ, Blackmore S: The northwest European pollen flora. Elsevier, Amsterdam. vol. 6, pp. 49-78, 1991
  20. Suarez Cervera M, Seoane Camba JA: Ontogenese des grains de pollen de Lavandula dentata L. et evolution des cellules tapetales. Pollen et Spores 28 : 5-28, 1986
  21. Takahashi M, Skvarla JJ: Pollen development in Oenothera biennis (Onagraceae). Amer J Bot 77(9) : 1142-1148, 1990 https://doi.org/10.2307/2444624
  22. Weber M: The detection of pollen endexines-with special reference to Araceae Pollen. Pollen and spores: morphology and biology, Abstracts, 49. Royal Botanic Gardens, Kew, 1998
  23. Weber M: The existence of a special exine coating in Geranium robertinum pollen. Int J Plant Sci 157(2) : 195-202, 1996 https://doi.org/10.1086/297338
  24. Weber M: The Formation of pollenkitt in Apium nodiflorum (Apoaceae). Annals of Botany 70 : 575-557, 1992
  25. Weber M: Ultrastructural changes in maturing pollen grains of Apium nodiflorum L. (Apiaceae), with special reference to the endoplasmic reticulum. Protoplasma 152 : 69-76, 1989 https://doi.org/10.1007/BF01323064
  26. Wiermann R, Gubatz S: Pollen wall and sporopollenin. Int Rev Cytol 140 : 35-72, 1992 https://doi.org/10.1016/S0074-7696(08)61093-1
  27. Xi YM, Wang FH: Pollen exine ultrastructure of extant Chinese gymnosperm. Cathaya 1 : 119-142, 1989