3-Dimensional Reconstruction of Parallel fiber-Purkinje Cell Synapses Using High-Voltage Electron Microscopy

고압전자현미경을 이용한 소뇌 평행섬유-조롱박세포간 신경연접의 3차원 재구성

  • Lee, Kea-Joo (Department of Anatomy, Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine) ;
  • Kweon, Hee-Seok (Electron Microscopy Team, Korea Basic Science Institute) ;
  • Kang, Ji-Seoun (Electron Microscopy Team, Korea Basic Science Institute) ;
  • Rhyu, Im-Joo (Department of Anatomy, Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine)
  • 이계주 (고려대학교 의과대학 해부학교실) ;
  • 권희석 (한국기초과학지원연구원 전자현미경팀) ;
  • 강지선 (한국기초과학지원연구원 전자현미경팀) ;
  • 유임주 (고려대학교 의과대학 해부학교실)
  • Published : 2005.03.01

Abstract

Synapses are contact points where one neuron communicates with another. The morphological change of synapses under various physiological or pathological conditions has long been hypothesized to modify their functional properties. 3-dimensional (3-D) reconstruction of synapses with serial ultrathin sections has contributed to the understanding of ultrastructural dimensions and compositions of synapses. The 3-D reconstruction procedures, however, require a great amount of expertise as well as include prohibitively timeconsuming processes. Here, we introduce efficient 3-D reconstruction technique using high-voltage electron microscopy (HVEM). Primarily, we established an optimal section thickness and staining condition to observe synaptic structures in detail under HVEM. The result showed that synaptic profiles were preserved at the section thickness of 250 nm without the overlapping of synaptic ultrastructures. An increase in the reaction time of en bloc staining was most efficient to enhance contrast than the extension of postembedding staining or the addition of uranyl acetate during dehydration. Then, 3-D reconstruction of parallel fiber-Purkinje cell synapses in the rat cerebellum was carried out with serial HVEM images and reconstruction software. The images were aligned and the contours of synapses were outlined on each section. 3-D synapses were finally extracted from the section files by grouping all the synaptic contours. The reconstructed synapse model clearly demonstrated the configuration of pre and postsynaptic components. These results suggest that 3-D reconstruction of synapses using HVEM is much efficient and suitable for massive quantitative studies on synaptic connectivity than conventional TEM approach using numerous ultrathin sections.

신경연접은 신경세포 사이의 신호전달을 위해 형성되는 미세구조로 다양한 생리적, 병리적 상태에 반응하여 형태적, 기능적 변화를 보인다. 현재까지 투과전자현미경을 이용한 신경연접 미세구조의 2차원적 연구들이 많은 유용한 정보를 제공하여 왔으나 신경연접 구성요소들을 보다 정확하게 분석하고 전신경연접부위와 후신경연접부위의 정확한 연결관계를 이해하기 위해서는 신경연접의 3차원 재구성이 요구된다. 고압전자현미경은 고해상도와 시료투과력의 증가로 인해 두꺼운 절편의 관찰이 가능하며 이를 통해 미세구조의 3차원적 특성을 규명하는 것이 용이하므로, 신경연접의 3차원 재구성에 고압전자현미경을 응용하는 것은 많은 수의 연속절편 제작과 오랜 기간의 영상처리가 요구되는 기존의 재구성 방법의 난점들을 극복할 수 있을 것으로 생각된다. 이에 본 연구에서는 고압전자현미경을 이용하여 흰쥐 소뇌 평행섬유와 조롱박세포 간 신경연접의 3차원 재구성을 시도하였다. 3차원 재구성에 앞서 염색방법과 절편 두께의 조절을 통해 고압전자현미경 하에서 신경연접의 적절한 관찰조건을 확립하고자 하였다. 관찰 결과, 절편의 두께가 증가하면 신경연접의 막, 소포와 같은 미세구조들의 겹침 현상이 나타나기 때문에 용이한 3차원 재구성을 위해서는 250 nm 두께의 절편을 제작하는 것이 적합한 것으로 판단되었다. 또한 절편제작 이전의 en bloc 염색 반응시간을 증가시키는 것이 절편제작 후 염색시간을 조절하는 것에 비해 contrast 증가에 더 효과적이었다. 이상의 결과로부터, 고압전자현미경을 이용하여 일련의 두꺼운 연속 절편을 촬영하고 3차원 재구성 프로그램을 이용하여 이미지들을 정렬하였으며 각각의 이미지에서 신경연접 막의 윤곽선을 그린 후 모든 윤곽선을 쌓아 올려 최종적으로 3차원 신경연접을 재구성하였다. 본 연구를 통하여 신경연접의 3차원 재구성에 있어 고압전자현미경의 적용 가능성을 검증하였고 관찰 조건을 확립하였다. 또한 고압전자현미경을 이용한 신경연접의 재구성은 많은 수의 연속절편 제작이 요구되는 기존의 방법에 비해 효율적이며 신경연접 연결형태에 관한 대규모의 정량 분석에 유용할 것으로 생각된다. 본 연구가 향후 고압전자현미경을 이용한 신경연접의 가소성 연구에 유용한 방법적 정보를 제공하기를 기대한다.

Keywords

References

  1. Bozzola JJ, Russell LD: Electron Microscopy: Principles and techniques for biologists, Jones and Bartlett, Boston, pp. 358-376, 1992
  2. Cohen-Cory S: The developing synapse: construction and modulation of synaptic structures and circuits. Science 298(5594) : 770-776, 2002 https://doi.org/10.1126/science.1075510
  3. Federmeier KD, Kleim JA, Greenough WT: Learning-induced multiple synapse formation in rat cerebellar cortex. Neurosci Lett 332 : 180-184, 2002 https://doi.org/10.1016/S0304-3940(02)00759-0
  4. Fiala JC, Allwardt B, Harris KM: Dendritic spines do not split during hippocampal LTP or maturation. Nat Neurosci 5(4) : 297-298, 2002 https://doi.org/10.1038/nn830
  5. Hama K, Arii T, Kosaka T: Three dimensional morphometrical study of dendritic spines of the granule cell in the rat dentate gyrus with HVEM stereo images. J Electron Microsc Tech 12(2) : 80-87, 1989 https://doi.org/10.1002/jemt.1060120203
  6. Hama K, Hirosawa K, Kosaka T: High voltage electron microscope in neuroscience. J Electron Microsc (Tokyo) 26 Suppl: 333-338, 1977
  7. Hama K, Kamino T: Three dimensional observation of sensory hairs of the lateral line canal organ of the sea eel using thick serial sections. Proceedings of the 3rd International Congress on High Voltage Electron Microscopy, Oxford. 423-425, 1974
  8. Harris KM, Stevens JK: Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 8(12) : 4455-4469, 1988
  9. Kim HT, Kim IH, Lee KJ, Lee JR, Park SK, Chun YH, Kim H, Rhyu IJ: Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning. Neuroreport 13 : 1607-1610, 2002 https://doi.org/10.1097/00001756-200209160-00007
  10. Kleim JA, Swain RA, Armstrong KA, Napper RM, Jones TA, Greenough WT: Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol Learn Mem 69 : 274-289, 1998 https://doi.org/10.1006/nlme.1998.3827
  11. Klintsova AY, Scamra C, Hoffman M, Napper RM, Goodlett CR, Greenough WT: Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats: II. A quantitative stereological study of synaptic plasticity in female rat cerebellum. Brain Res 937(1-2) : 83-93, 2002 https://doi.org/10.1016/S0006-8993(02)02492-7
  12. Lee KJ, Kim H, Kim TS, Park SH, Rhyu IJ: Morphological analysis of spine shapes of Purkinje cell dendrites in the rat cerebellum using high-voltage electron microscopy. Neurosci Lett 359(1-2) : 21-24, 2004 https://doi.org/10.1016/j.neulet.2004.01.071
  13. Lee KJ, Park CH, Rhyu IJ: Efficient three-dimensional reconstruction of synapse with high-voltage electron microscopy. J Electron Microsc (Tokyo) 54, 2005 In Press
  14. Locke M, Krishnan N: Hot alcoholic phosphotungstic acid and uranyl acetate as routine stains for thick and thin sections. J Cell Biol 50(2) : 550-557, 1971 https://doi.org/10.1083/jcb.50.2.550
  15. Muller D, Nikonenko I, Jourdain P, Alberi S: LTP, memory and structural plasticity. Curr Mol Med 2(7) : 605-611, 2002 https://doi.org/10.2174/1566524023362041
  16. Ostroff LE, Fiala JC, Allwardt B, Harris KM; Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35(3) : 535-545, 2002 https://doi.org/10.1016/S0896-6273(02)00785-7
  17. Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ: Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3(3) : 238-244, 2000 https://doi.org/10.1038/72945
  18. Rhyu IJ, Abbott LC, Walker DB, Sotelo C: An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tg (la)/tg (la)) and compound heterozygous tottering/leaner (tg/tg (la)) mice. Neuroscience 90(3) : 717-728, 1999 https://doi.org/10.1016/S0306-4522(98)00518-1
  19. Shepherd GM, Harris KM: Three-dimensional structure and composition of CA3-->CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci 18(20) : 8300-8310, 1998
  20. Song MJ, Reilly AA, Parsons DF, Hussain M: Patterns of blood-vessel invasion by mammary tumor cells. Tissue Cell 18(6) : 817-825, 1986 https://doi.org/10.1016/0040-8166(86)90040-6
  21. Ventura R, Harris KM: Three dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19(16) : 6897-6906, 1999
  22. Woolley CS: Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm Behav 34(2) : 140-148, 1998 https://doi.org/10.1006/hbeh.1998.1466
  23. Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD, Rubin GM, Broadie K: Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107(5) : 591-603, 2001 https://doi.org/10.1016/S0092-8674(01)00589-X