Effects of Dissolved Microcystin-LR on the Different Phytoplankton Communities in a Microcosm Scale

용존성 독소 microcystin-LR이 식물플랑크톤 군집에 미치는 영향

  • Suh, Mi-Yeon (Seoul Metropolitan Government, Research Institute of Public Health and Environment) ;
  • Han, Myung-Soo (Department of Environmental Science, Hanyang University) ;
  • Kim, Baik-Ho (Department of Environmental Science, Hanyang University)
  • Published : 2005.09.30

Abstract

Based on the result that biological control agent (BCA) increased the dissolved microcystin-LR in a field experiment to control the cyanobacterial bloom (Kim etal., 2005), a laboratory experiment was used to evaluate the effects of dissolved microcystin-LR (MCLR) with different concentrations on abundance, dominance, diversity of phytoplankton community, concentration of chlorophyll a and microcystin concentration in replicated microcosms. The treatments in this laboratory experiment comprised different concentrations of T1 (natural MCLR concentration), T10 (ten times to natural MCLR concentration), and T100 (one hundred times to natural MCLR concentration). MCLR treatment of exclusively Stephanodiscus hantzschii-dominated community in Chonho bridge hardly changed in algal species, but abundance. In Kildong pond, Aulacoseira and Dinobryonrich community was replaced by green algae Scenedesmus-rich community especially in T100 experiment. However, in Yangsoori-Ryukgakji Pond having the highest concentration of initial MCLR, Microcystis aeruginosa was decreased in abundance. Therefore, the treatment of BCA to control M. aeruginosa severely changed the Phytoplankton community in term of algal species, abundance (chlorophyll a) and dissolved microcystin-LR via a high release of MCLR.

남조 대발생을 제어하기 위한 생물제재의 처리가 수중 생태계에 미치는 영향을 파악하는 연구의 일환으로, 살조세균 처리이후 증가된 용존성 microcystin-LR (MCLR)이 식물플랑크톤 군집의 종조성 및 현존량, 그리고 조류독소 분포에 어떠한 영향을 주는 지를 파악하기 위하여, MCLR standard를 성격이 다른 3가지 현장수를 넣은 시험관에 대조군, 현장 농도의 10배, 100배 씩 처리하고 식물플랑크톤 생물량, 엽록소 a,환경요인, 독소량 등의 변화를 각각 조사하였다. 규조 Stephanodiscus hantzschii가 압도적으로 우점하였던 천호대교에서는 독소처리이후 현존량은 점차 감소하였으며 종조성은 크게 변하지 않았으며, 규조 Aluacoseira와 황색편모조 Dinobryon이 우점한 길동생태공원에서는 현존량이 크게 감소한 반면, 고농도 처리에서는 녹조 Scenedesmus가 크게 발달하였다. 남조류와 용존성 MCLR 농도가 가장 높았던 양수리 육각지에서는 남조 M. aeruginosa 감소 및 총 현존량의 감소가 일어났다. 이상의 결과는 생물제재 처리이후 남조 M. aeruginosa 사멸에 따른 용존성 독소의 증가가 수중내 식물플랑크톤 군집의 종조성 및 현존량 변화를 더욱 심화시키는 것으로 밝혀졌다.

Keywords

References

  1. 김백호, 정승원, 서종근, 서미연, 한명수. 2005. 살조세균 적용이 식물플랑크톤 군집 및 조류독소 분포에 미치는 영향. 한국육수학회지. 38: 395-404
  2. 김범철, 김호섭, 유민철, 최연규, 박호동, 최일환. 1998. 국내 호 수에서 발생하는 남조류 독소의 분포. 한국수질보전학회 춘계학술발표회 논문초록집, 141-144
  3. 박혜경, 진익렬, 류홍일, 류재근, 稲森悠平 . 1996. Microcystis (Cyanobacteria) 분리주에서의 Microcystin 생산에 관한 연구. 한국수질보전학회지 12: 29-34
  4. 서미연, 김백호, 한명수. 2005. 서울 경기지역의 공원 연못 및 한강수계내 조류독소 Microcystin-LR의 분포. 한국육수학회지. 38: 371-382
  5. 최병욱, 노영호, 이종수. 1997.한국산 남조류 Microcystis로부 터 생산된 Microcystin 구조와 생물활성에 관한 연구. 공업화학 8: 610-616
  6. Andersen, R.J., H.A. Luu, D.Z.X. Chen, C.F.B. Holmes, M.L. Kent, M. LeBlac, F.J.R. Taylor and D.E. Williams. 1993. Chemical and biological evidence links microcystin- LR to salmon netpen liver disease. Toxicon. 31: 1315-1323 https://doi.org/10.1016/0041-0101(93)90404-7
  7. APHA. 1995. Standard methods for the examination of water and wastewater. 19th Ed. APHA, AWWA, WPCF, Washington, p. 1134
  8. Bandala, E.R., D. Martinez, E. Martinez, D.D. Dionysiou. 2004. Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes. Toxicon. 43: 829-832 https://doi.org/10.1016/j.toxicon.2004.03.013
  9. Brittain, S., Z.A. Mohamed, J. Wang, V.K.B. Lehmann, W.W. Carmichael and K.L. Rinehart, 2000. Isolation and characterization of microcystins from a River Nile strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon. 38: 1759-1771 https://doi.org/10.1016/S0041-0101(00)00105-7
  10. Carmichael, W.W. and R.S. Saffermann. 1992. A status report on planktonic cyanobacteria (blue-green algae) and their toxins. EPA/600/R92/079
  11. Chen, D.Z.X., M.P. Boaland, M.A. Smillie, H. Klix, C. Ptak, R.J. Andersen and C.F.B. Holmes. 1993. Identification of protein phosphatase inhibitors of the microcystin class in the marine environment. Toxicon, 31: 1407- 1414 https://doi.org/10.1016/0041-0101(93)90206-X
  12. Choi, H.-J., B.-H. Kim, J.-D. Kim and M.-S. Han. 2005. Streptomyces neyagawaensis as a control for the harzardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biological Control 33: 335-343 https://doi.org/10.1016/j.biocontrol.2005.03.007
  13. Chorus, I. and J. Bartram. 1999. Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring and Management. Geneva: World Health Organization
  14. Codd, G.A. 1995. Cyanobacteria toxins: occurrence, properties and biological significance. Water Sci. Tech. 32: 149- 156
  15. Daft, M.J., S.B. McCord and W.D.P. Stewart. 1975. Ecological studies on algal-lysing bacteria in fresh waters. Freshwater Biol. 5: 577-596 https://doi.org/10.1111/j.1365-2427.1975.tb00157.x
  16. Domingos, P., T.K. Rubim, R.J.R. Molica, S.M.F.O. Azevedo and W.W. Carmichael. 1999. First report of microcystin production by picoplanktonic cyanobacteria isolated from a northeast Brazilian drinking water supply. Environ. Toxicol. 14: 31-35 https://doi.org/10.1002/(SICI)1522-7278(199902)14:1<31::AID-TOX6>3.0.CO;2-B
  17. Francis, G. 1878. Poisonous Australian lake. Nature 18: 11-12
  18. Fujiki, H. and M. Suganuma. 1999. Unique features of the okadaic acid activity class of tumor promoters. J. Cancer Res. Clin. Oncol. 125: 150-155 https://doi.org/10.1007/s004320050257
  19. Fukushima, M., N. Takamura, B.H. Kim, M. Nakagawa, L. Sun and Y. Zheng. 2000. The responses of an aquatic ecosystem to the manipulation of the filter-feeding silver carp (Hypophthalmichthys molitrix) Verh. Internat. Verein. Limnol. 27: 1-7
  20. Harada, K-I., K. Ogawa, K. Matsuura, H. Murata, M. Suzuki, Y. Itezono, N. Nakayama, M. Shirai and M. Nakano. 1991. Isolation of two toxic heptapeptide microcystins from an axenic strain of Microcystis aeruginosa, K-139. Toxicon. 29: 479-489
  21. Harada, K-I. and K. Tsuji. 1998. Persistence and Decomposition of Hepatotoxic Microcystins Produced by Cyanobacteria in Natural Environment. J. Toxicol.-Toxin reviews. 17: 385-403 https://doi.org/10.3109/15569549809040400
  22. Jochimsen, E.M., W.W. Carmichael, J.S. An, D.M. Cardo, S.T. Cookson, C.E. Holmes, M.B. Antunes, D.A. de Melo Filho, T.M. Lyra, V.S. Barreto, et al. 1998. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338: 873-878 https://doi.org/10.1056/NEJM199803263381304
  23. Jungmann, D. and J. Benndorf. 1994. Toxicity to Daphnia of a compound extracted from laboratory and natural Microcystis spp., and the role of microcystins. Freshwater Biol. 32: 13-20 https://doi.org/10.1111/j.1365-2427.1994.tb00861.x
  24. Kotak, B.G., A.K-Y. Lam and E.E. Prepas. 1995. Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes. J. Phycol. 31: 248-263 https://doi.org/10.1111/j.0022-3646.1995.00248.x
  25. Kotak, B.G., S.L. Kenefick, D.L. Fritz, C.G. Rousseaux, E.E. Prepas and S.E. Hrudey. 1993. Occurrence and toxicological evaluation of cyanobacterial toxins in Alberta surface waters. Water Res. 27: 495-506 https://doi.org/10.1016/0043-1354(93)90050-R
  26. Kotak, B.G., R.W. Zurawell, E.E. Prepas, C.F.B. Holmes. 1996. Micocystin-LR concentration in aquatic food web compartments from lakes of varying trophic status. Can. J. Fish Aquat. Sci. 53: 1974-1985 https://doi.org/10.1139/cjfas-53-9-1974
  27. Krishnamurthy, T., W.W. Carmichael and E.W. Sarver. 1986. Investigations of freshwater cyanobacteria (bluegreen algae)toxic peptides. I. Isolation, purification and characterization of peptides from Microcystis viridis. Tetrahedron Lett. 26: 4695-4698 https://doi.org/10.1016/S0040-4039(00)94926-8
  28. Manage, P.M., Z. Kawabata and S. Nakano. 2001. Dynamics of cyanophage-like and algicidal bacteria causing Microcystis aeruginosa mortality. Limnology 2: 73-78 https://doi.org/10.1007/s102010170002
  29. McNaughton, S.J. 1967. Structure and function in California grasslands. Ecology 49: 962-972
  30. Meriluoto, J.A.O., A. Sandstrm, J.E. Eriksson, G. Remaud, A.G. Craig and J. Chattopadhyaya. 1989. Structure and toxicity of a peptide hepatotoxin from the cyanobacterium Oscillatoria agardhii. Toxicon. 27: 1021-1034 https://doi.org/10.1016/0041-0101(89)90153-0
  31. Park, H.D. and M.F. Watanabe, 1996. Toxic Microcystis in eutrophiclakes. In: Watanabe , M.F., Harada, K.-I., Carmichael, W.W., Fujiki, H. (Eds.). Toxic Microcystis, CRC Press, Boca Raton, FL, pp. 57-77
  32. Rabergh, C.M.I., G. Bylund and J.E. Eriksson. 1991. Histopathological effects of MC-LR, a cyclic peptide toxin from the cyanobacterium (blue-green alga) Microcystis aeruginosa, on common carp (Cyprinus carpio L.). Aquat. Toxicol. 20: 131-146 https://doi.org/10.1016/0166-445X(91)90012-X
  33. Rodger H.D., T. Turnbull, C. Edwards and G.A. Codd. 1994. Cyanobacterial (blue-green-algal) bloom associated pathology in brown trout, Salmo trutta L., in Loch Leven, Scotland. J. Fish Dis. 17: 177-181 https://doi.org/10.1111/j.1365-2761.1994.tb00211.x
  34. Runnegar M.T.C., J. Andrews, R.G. Gerdes and I.R. Falconer. 1987. Injury to hepatocytes induced by a peptide toxin from the cyanobacterium Microcystis aeruginosa. Toxicon. 25: 1235-1239 https://doi.org/10.1016/0041-0101(87)90142-5
  35. Shannon, E.C. and W. Weaver. 1963. The mathematical theory of communication. University of Illinois Press, Urbana. 117pp
  36. Sigee, D.C., R. Glenn, M.J. Andrews, E.G. Bellinger, R.D. Butler, H.A.S. Epton and R.D. Hendry. 1999. Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396: 161-172 https://doi.org/10.1023/A:1017097502124
  37. Sivonen, K. 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl. Environ. Microbiol. 56: 2658-66
  38. Sugaya, Y., M. Yasuno and T. Yanai. 1990. Effects of toxic Microcystis viridis and isolated toxins on goldfish. Jpn. J. Limnol. 51: 149-153 https://doi.org/10.3739/rikusui.51.149
  39. Watanabe, M.F., S. Oishi, Y. Watanabe and M. Watanabe. 1986. Strong probability of lethal toxicity in the bluegreen alga Microcystis viridis Lemmermann. J. Phycol. 22: 552-556 https://doi.org/10.1111/j.1529-8817.1986.tb02502.x
  40. Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida and K. Harada. 1998. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J. Appl. Phycol. 10: 391-397 https://doi.org/10.1023/A:1008077414808
  41. Yuan, B.L., J.H. Qu and M.L. Fu. 2002. Removal of cyanobacterial microcystin-LR by ferrate oxidation-coagulation. Toxicon. 40: 1129-1134 https://doi.org/10.1016/S0041-0101(02)00112-5