Shift of the Brain during Functional Neurosurgery

  • Kim, Suk-Min (Department of Neurosurgery, College of Medicine, Hallym University) ;
  • Hwang, Hyung-Sik (Department of Neurosurgery, College of Medicine, Hallym University) ;
  • Salles, Antonio De (Division of Neurosurgery, University of California, Los Angeles)
  • Published : 2005.11.28

Abstract

Objective : The study investigates the extent of brain shift and its effect on the accuracy of the stereotaxic procedure. Methods : Thirty-five patients underwent 40stereotactic procedures between June 2002 and March 2004. There were 26 males, mean age 59years old. There were 34procedures for Parkinson's disease, 2 for essential tremor, 3 for cerebral palsy, 1 for dystonia. Patients were divided in four groups based on postoperative pneumocephalus : under 5cc [9 procedures], between $5{\sim}10cc$ [13procedures], between $10{\sim}15cc$ [11 procedures] and more than 15cc [7procedures]. The coordinates of the anterior commissure[AC], posterior commissure[PC], and target were defined in pre-and intraoperative magnetic resonance image scans and the amount of air volume was measured with @Target (BrainLab, Heimstetten, Germany]. Results : The mean AC-PC was 26.5mm for patients with less than 5cc, 26.9mm for $5{\sim}10cc$, 25.8mm for $10{\sim}15cc$ and 26.2mm for more than 15cc. The length of AC-PC line and coordinates of AC, PC was also not statistically different, Euclidean distance as well as ${\Delta}x$, ${\Delta}y$, ${\Delta}z$ of AC, PC, and target were also not statistically different among the groups [p>,1]. There was a variance in target of $0.7{\sim}7.6mm$, Euclidean distance of 2.5mm, related to electrophysiology but not to brain-shift. Conclusion : The amount of air accumulated in the intracranial space and compressing the cortical surface has no effect on the localization of subcortical stereotactic target and landmarks.

Keywords

References

  1. Alesch F, Koos WT : Computer-assisted multidimensional atlas for functional stereotaxy. Acta Neurochir (Wien) 133 : 153-156, 1995 https://doi.org/10.1007/BF01420066
  2. Antonio AF, De salle MH : Magnetic resonance image-guided pallidotomy in Rengachary SS, Wilkins RH(eds) : Neurosurgical Operative Atlas. New York : Thieme, 1998, Vol 7, pp141-148
  3. Anzai Y, Desalles AA, Black KL, Sinha S, Farahani K, Behnke EA, et al : Interventional MR imaging. Radiographics 13 : 897-904, 1993 https://doi.org/10.1148/radiographics.13.4.8356275
  4. Benabid AL, Koudsie A, Pollak P, Kahane P, Chabardes S, Hirsch E, et al : Future prospects of brain stimulation. Neurol Res 22 : 237- 246, 2000 https://doi.org/10.1080/01616412.2000.11740666
  5. Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P : Deep brain stimulation of the subthalamic nucleus for Parkinson's disease : methodologic aspects and clinical criteria. Neurology 55 : 40-44, 2000
  6. Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, et al : Acute and long-term effects of subthalamic nucleus stimulation in Parkinson's disease. Stereotact Funct Neurosurg 62 : 76-84, 1994 https://doi.org/10.1159/000098600
  7. Benabid AL, Pollak P, Seigneuret E, Hoffmann D, Gay E, Perret J : Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias. Acta Neurochir Suppl (Wien) 58 : 39-44, 1993
  8. Cuny E, Guehl D, Burbaud P, Gross C, Dousset V, Rougier A : Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target : the role of electrophysiological guidance. J Neurosurg 97 : 591-597, 2002 https://doi.org/10.3171/jns.2002.97.3.0591
  9. De Salles A, Frighetto L, Behnke E, Sinha S, Tseng L, Torres R, et al : Functional Neurosurgery in the MRI Environment. Minim Invasive Neurosurg : 284-289, 2004
  10. De Salles A, Seibel RM, Lufkin R : Instrumentation for interventional MRI of the brain in De Salles A, Lufkin R(eds) : Minimally invasive therapy of the brain. New York : Thieme, 1997, pp108-115
  11. DiPierro CG, Francel PC, Jackson TR, Kamiryo T, Laws ER Jr : Optimizing accuracy in magnetic resonance imaging-guided stereotaxis : a technique with validation based on the anterior commissure-posterior commissure line. J Neurosurg 90 : 94-100, 1999 https://doi.org/10.3171/jns.1999.90.1.0094
  12. Fukuda M, Kameyama S, Noguchi R, Tanaka R : Intraoperative monitoring for functional neurosurgery during intravenous anesthesia with propofol. No Shinkei Geka 25 : 231-237, 1997
  13. Garonzik IM, Hua SE, Ohara S, Lenz FA : Intraoperative microelectrode and semi-microelectrode recording during the physiological localization of the thalamic nucleus ventral intermediate. Mov Disord (Suppl 3) 17 : 135-144, 2002 https://doi.org/10.1002/mds.10155
  14. Gliemroth J, Gaebel C, Kehler U, Grande-Nagel I, Missler U, Arnold H : An in vitro study to evaluate the accuracy of stereotactic localization using magnetic resonance imaging by means of the Leksell stereotactic system. Minim Invasive Neurosurg 45 : 1-5, 2002 https://doi.org/10.1055/s-2002-23585
  15. Gross RE, Lombardi WJ, Hutchison WD, Narula S, Saint-Cyr JA, Dostrovsky JO, et al : Variability in lesion location after microelectrodeguided pallidotomy for Parkinson's disease : anatomical, physiological, and technical factors that determine lesion distribution. J Neurosurg 90 : 468-477, 1999 https://doi.org/10.3171/jns.1999.90.3.0468
  16. Gross RE, Lozano AM : Advances in neurostimulation for movement disorders. Neurol Res 22 : 247-258, 2000 https://doi.org/10.1080/01616412.2000.11740667
  17. Hamel W, Schrader B, Weinert D, Herzog J, Volkmann J, Deuschl G, et al : MRI-and skull x-ray-based approaches to evaluate the position of deep brain stimulation electrode contacts--a technical note. Zentralbl Neurochir 63 : 65-69, 2002 https://doi.org/10.1055/s-2002-33976
  18. Hariz MI : Clinical study on the accuracy of the Laitinen CTguidance system in functional stereotactic neurosurgery. Stereotact Funct Neurosurg 56 : 109-128, 1991 https://doi.org/10.1159/000099397
  19. Hariz MI, Bergenheim AT : A comparative study on ventriculographic and computerized tomography-guided determinations of brain targets in functional stereotaxis. J Neurosurg 73 : 565-571, 1990 https://doi.org/10.3171/jns.1990.73.4.0565
  20. Hariz MI, Bergenheim AT, Fodstad H : Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotactic procedures. Acta Neurochir (Wien) 123 : 147-152, 1993 https://doi.org/10.1007/BF01401871
  21. Hariz MI, Krack P, Melvill R, Jorgensen JV, Hamel W, Hirabayashi H, et al : A quick and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg 80 : 96-101, 2003 https://doi.org/10.1159/000075167
  22. Herman M, Houdek M, Nadvornik P : Computer tomography in functional stereotactic neurosurgery. Cas Lek Cesk 130 : 640-644, 1991
  23. Kall BA, Goerss SJ, Kelly PJ : A new multimodality correlative imaging technique for VOP/VIM (VL) thalamotomy procedures. Stereotact Funct Neurosurg 58 : 45-51, 1992 https://doi.org/10.1159/000098971
  24. Kim JE, PaekSH, Chung HT, Kim DG : Gamma knife radiosurgery for thalamotomy in parkinsonian tremor-preliminary report-. J Korean Neurosurg Soc 33 : 370-375, 2003
  25. Katayama Y : Deep brain stimulation(DBS) therapy for parkkinson,s disease. Nippon Rinsho 58 : 2078-2083, 2000
  26. Koller WC, Pahwa PR, Lyons KE, Wilkinson SB : Deep brain stimulation of the Vim nucleus of the thalamus for the treatment of tremor. Neurology 55 : 29-33, 2000
  27. Krause M, Fogel W, Mayer P, Kloss M, Tronnier V : Chronic inhibition of the subthalamic nucleus in Parkinson's disease. J Neurol Sci 219 : 119-124, 2004 https://doi.org/10.1016/j.jns.2004.01.004
  28. Levesque MF, Wilson CL, Behnke EJ, Zhang JX : Accuracy of MRguided stereotactic electrode implantation. 1. Preimplantation correlation with the Talairach system. Stereotact Funct Neurosurg 54- 55: 51-55, 1990
  29. Wester K, Krakenes J : Vertical displacement of the brain and the target area during open stereotaxic neurosurgery. Acta Neurochir (Wien) 143 : 603-606, 2001 https://doi.org/10.1007/s007010170065