DOI QR코드

DOI QR Code

식물체의 면역반응 기작

Molecular Mechanism of Plant Immune Response

  • 권택민 (동아대학교 분자생명공학부) ;
  • 남재성 (동아대학교 분자생명공학부)
  • Kwon Tack-Min (Division of Molecular Biotechnology, Dong-A University) ;
  • Nam Jae-Sung (Division of Molecular Biotechnology, Dong-A University)
  • 발행 : 2005.06.01

초록

Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products and sequential signal transduction pathways activating defense responses are rapidly triggered. As a results, not only exhibit a resistance against invading pathogens but also plants maintain the systemic acquired resistance (SAR) to various other pathogens. This molecular interaction between pathogen and plant is commonly compared to innate immune system of animal. Recent studies arising from molecular characterization of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on molecular mechanism of gene-for-gene interaction. Furthermore, new technologies of genomics and proteomics make it possible to monitor the genome-wide gene regulation and protein modification during activation of disease resistance, expanding our ability to understand the plant immune response and develop new crops resistant to biotic stress.

키워드

참고문헌

  1. Abramovitch RB, Kim Y-J, Chen S, Dickman MB, Matrin GB (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death, EMBO J 22: 60-69 https://doi.org/10.1093/emboj/cdg006
  2. Abramovitch RB, Matrin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7: 1-9 https://doi.org/10.1016/j.pbi.2003.11.012
  3. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Regulatory role of SGTl in early R gene-mediated plant defenses. Science 295: 2077-2080 https://doi.org/10.1126/science.1067747
  4. Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112: 369-377 https://doi.org/10.1016/S0092-8674(03)00036-9
  5. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RARI interactor SGTl, an essential component of R gene-triggered disease resistance. Science 295: 2073-2076 https://doi.org/10.1126/science.1067554
  6. Banerjee D, Zhang X, Bent AF (2001) The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2mediated disease resistance. Genetics 158: 439-450
  7. BeIkhadir Y, Subramanian R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7: 391-399 https://doi.org/10.1016/j.pbi.2004.05.009
  8. Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPMldisease resistance gene product is a peripheral plasmamembrane protein that is degraded coincident with thehypersensitive response. Proc. Nat! Acad Sci USA 95: 15849-15854 https://doi.org/10.1073/pnas.95.26.15849
  9. Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Houb E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidpsis disease resistance. Science 279: 1963-1965
  10. Cohn J, Sessa G, Martin GB (2001) Innate immunity in plants. Curr Opin Immunol 13: 55-62 https://doi.org/10.1016/S0952-7915(00)00182-5
  11. Dangl JL, Jones JDG (2001) Nature 411: 826-833 https://doi.org/10.1038/35081161
  12. Deslandes L, Olivier J, Theulie'res F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRSl-R gene, a member of a novel family of resistance genes. Proc Nat! Acad Sci USA 99: 2404- 2409 https://doi.org/10.1073/pnas.032485099
  13. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRSl-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100: 8024-8029 https://doi.org/10.1073/pnas.1230660100
  14. Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6: 307-311 https://doi.org/10.1016/S1369-5266(03)00060-8
  15. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner' JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-Iigase complex in Arabidopsis. Plant J 32: 457-466 https://doi.org/10.1046/j.1365-313X.2002.01432.x
  16. Ellis J, Dodds P (2003) Plant pathology: Monitoring a pathogen-targeted host protein. Curr BioI 13: R400-R4002 https://doi.org/10.1016/S0960-9822(03)00321-X
  17. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci in press 10: 71-78 https://doi.org/10.1016/j.tplants.2004.12.006
  18. Falk A, Fets B, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS 1, an essential component of R genemediated disease resistance in Arabidopsis has homology to eukaryotic lipase. Proc Natl Acad Sci USA 96: 3292-3297 https://doi.org/10.1073/pnas.96.6.3292
  19. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Plant Pathol 9: 275-296
  20. Gagne JM, Downes BP, Shiu S-H, Diurskl AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabldopsls, Proc Natl Acad Sci USA 99: 11519-11524 https://doi.org/10.1073/pnas.162339999
  21. Hauck P, Thilmony R, He SY (2003) A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci USA 100: 8577-8582 https://doi.org/10.1073/pnas.1431173100
  22. Hare PD, Seo HS, Yang J-Y, Chua N-H (2003) Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization. Curr Opin Plant Biol 6: 1-10 https://doi.org/10.1016/S1369-5266(02)00015-8
  23. Holt BF Ill, Hubert DA, Dangl JL (2003) Resistance gene signaling in plants -complex similarities to animal innate immunity. Curr Opin Immunol 15: 20-25 https://doi.org/10.1016/S0952-7915(02)00014-6
  24. Hotson A, Mudgett MB (2004) Cystein proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7: 384-390 https://doi.org/10.1016/j.pbi.2004.05.003
  25. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl, Jl (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 21: 5679-5689
  26. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19: 4004-4014 https://doi.org/10.1093/emboj/19.15.4004
  27. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789-793 https://doi.org/10.1126/science.7973631
  28. Jones DA, Takemoto D (2004) Plant innate immunity-direct and indirect recognition of general and specific pathogenassociate molecules. Curr Opin lmmunol 16: 48-62 https://doi.org/10.1016/j.coi.2003.11.016
  29. Joosten MHAJ, Cozijnsen TJ, de Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384-386 https://doi.org/10.1038/367384a0
  30. Katagiri F (2004) A global view of defense gene expression regulation - a highly interconneted signaling network. Curr Opin Plant BioI 7: 506-511 https://doi.org/10.1016/j.pbi.2004.07.013
  31. Kruger J, Thomas CM, Golstein C, Dion MS, Smoker M, Jones JDG (2002) A tomato cyctein protease required for Cf-2 dependent disease resistance and suppression of autonecrosis. Science 296: 744-747 https://doi.org/10.1126/science.1069288
  32. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogens. Curr Opin Plant Biol 5: 325-331 https://doi.org/10.1016/S1369-5266(02)00275-3
  33. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDSI and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415-429 https://doi.org/10.1046/j.1365-313X.2002.01297.x
  34. Liu Y, Schiff M, Serino G, Deng X-W, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14: 1483-1496 https://doi.org/10.1105/tpc.002493
  35. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112: 379-389 https://doi.org/10.1016/S0092-8674(03)00040-0
  36. Mackey D, Holt BF Ill, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1 mediated resistance in Arabidopsis. Cell 108: 743-754 https://doi.org/10.1016/S0092-8674(02)00661-X
  37. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54: 23-61 https://doi.org/10.1146/annurev.arplant.54.031902.135035
  38. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834 https://doi.org/10.1105/tpc.009308
  39. Moffett P, Farnham G, Peart J, Baulcombe DC (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21: 4511-4519 https://doi.org/10.1093/emboj/cdf453
  40. Mou Z, Fan X, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPRI function through redox change. Cell 113: 935-944 https://doi.org/10.1016/S0092-8674(03)00429-X
  41. Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JDG, Parker JE (2002) Arabidopsis RARI exerts ratelimiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14: 979-992 https://doi.org/10.1105/tpc.001040
  42. Nimchuk Z, Eulgem T, Holt III BF, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37: 579-609 https://doi.org/10.1146/annurev.genet.37.110801.142628
  43. Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DAW, Xiao S, Coleman MJ, Dow M, Jones JDG, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 99: 10865-10869 https://doi.org/10.1073/pnas.152330599
  44. Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580 https://doi.org/10.1105/tpc.10.9.1571
  45. Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19: 76-84 https://doi.org/10.1093/oxfordjournals.molbev.a003984
  46. Rivas S, Mucyn T, van den Burg HA, Vervoort J, Jones JDG (2002) An -400 kDA membrane-associated complex that contains one molecule of the resistance protein Cf4. Plant J 29: 783-796 https://doi.org/10.1046/j.1365-313X.2002.01254.x
  47. Schlze-Lefert P (2004) Plant Immunity: The origami of receptor activation. Curr Biol 14: R22-R24 https://doi.org/10.1016/j.cub.2003.12.017
  48. Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109: 575-588 https://doi.org/10.1016/S0092-8674(02)00766-3
  49. Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301: 1230-1233 https://doi.org/10.1126/science.1085671
  50. Shen Q-H, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/ SGT1 dependence in barley Mia disease resistance genes to the powdery mildew fungus. Plant Cell 15: 732-744 https://doi.org/10.1105/tpc.009258
  51. Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease resistance pathways. Trends Plant Sci 8: 252-258 https://doi.org/10.1016/S1360-1385(03)00104-3
  52. Shiu S-H, Bleecker AB (2003) Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132: 530-543 https://doi.org/10.1104/pp.103.021964
  53. Song W-Y, Wang G-L, Chen L-L, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806 https://doi.org/10.1126/science.270.5243.1804
  54. Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129: 1131-1141
  55. Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26: 101-112 https://doi.org/10.1046/j.1365-313x.2001.01014.x
  56. Takahashi A, Casais C, Ichimura K, Shirasu K:(2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 20: 11777-11782
  57. Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJC (2002) The tomato R gene products 1-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14: 2929-2939 https://doi.org/10.1105/tpc.005793
  58. Tanaka N, Che F-S,Watanabe N, Fujiwara S, Takayama S, Isogai A (2003) Flagellin from an incompatible strain of Acidovorax avenae mediates H2O2 generation accompanying hypersensitive cell death and expression of PAL, Cht-1, and PBZ1, but not of Lox in rice. Mol Plant Microbe Interact 16: 422-428 https://doi.org/10.1094/MPMI.2003.16.5.422
  59. Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Katagiri F (2003) Quantitative nature of Arabidopsis response during compatible and incompatible interaction with the bacterial pathogen Pseudomonas syringae. Plant Cell 15: 317-30 https://doi.org/10.1105/tpc.007591
  60. Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Curr Opin Plant BioI 6: 351-357 https://doi.org/10.1016/S1369-5266(03)00063-3
  61. Tor M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Turk F, Can C, Dangl JL, Holub EB (2002) Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14: 993-1003 https://doi.org/10.1105/tpc.001123
  62. Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14: 1005-1015 https://doi.org/10.1105/tpc.001032
  63. van den Burg HA, Westerink N, Francoijs K-J, Roth R., Woestenenk E, Boeren S, de Wit PJGM, Joosten MHAJ, Vervoort J (2003) Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4mediated resistance, but retain their chitin bindinq, ability. J BioI Chem 278: 27340-27346 https://doi.org/10.1074/jbc.M212196200
  64. van der Biezen EA, Jones JDG (1998) Plant diseaseresistance proteins and the gene-for-gene concept. Trends Biochem Sci 23: 454-456 https://doi.org/10.1016/S0968-0004(98)01311-5
  65. van der Hoorn RA, De Wit PJGM, Joosten MHAJ (2002) Balancing selection favors guarding resistance: proteins. Trends Plant Sci 7: 67-71 https://doi.org/10.1016/S1360-1385(01)02188-4
  66. van der Hoorn RA, Jones JDG (2004) The plant proteolytic machinery and its role in defense. Curr Opin Plant Biol 7: 400-407 https://doi.org/10.1016/j.pbi.2004.04.003
  67. Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414: 562-565 https://doi.org/10.1038/35107108
  68. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120 https://doi.org/10.1126/science.291.5501.118
  69. Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6: 520-527 https://doi.org/10.1016/S1360-1385(01)02103-3
  70. Zhou J-M, Loh, Y-T, Bressan RA, Martin GB (1995) The tomato gene Pti encodes a serine-threonine kinase that is ohosphorylated by Pto and is involved in the hypersensitive response. Cell 83: 925-935 https://doi.org/10.1016/0092-8674(95)90208-2
  71. Zhou N, Tootle TL, Klessig DF, Glazebrook J (1998) PAD4 functions upstream of salicylic acid to control defenses in Arabidopsis. Plant Cell 10: 1021-1030 https://doi.org/10.1105/tpc.10.6.1021