The Effects of the Annealing on the Reflow Property of Cu Thin Film

열처리에 따른 구리박막의 리플로우 특성

  • Kim Dong-Won (Department of Materials Science and Engineering, Kyonggi University) ;
  • Kim Sang-Ho (Department of Materials Engineering, Korea University of Technology and Education, Chungnam)
  • 김동원 (경기대학교 재료공학과) ;
  • 김상호 (한국기술교육대학교 신소재공학과)
  • Published : 2005.02.01

Abstract

In this study, the reflow characteristics of copper thin films which is expected to be used as interconnection materials in the next generation semiconductor devices were investigated. Cu thin films were deposited on the TaN diffusion barrier by metal organic chemical vapor deposition (MOCVD) and annealed at the temperature between 250℃ and 550℃ in various ambient gases. When the Cu thin films were annealed in the hydrogen ambience compared with oxygen ambience, sheet resistance of Cu thin films decreased and the breakdown of TaN diffusion barrier was not occurred and a stable Cu/TaN/Si structure was formed at the annealing temperature of 450℃. In addition, reflow properties of Cu thin films could be enhanced in H₂ ambient. With Cu reflow process, we could fill the trench patterns of 0.16~0.24 11m with aspect ratio of 4.17~6.25 at the annealing temperature of 450℃ in hydrogen ambience. It is expected that Cu reflow process will be applied to fill the deep pattern with ultra fine structure in metallization.

Keywords

References

  1. S: P. Murarka, Metallization, Theory and Practice for VLSI and ULSI, Butterworth-Heinemann (1993) 1
  2. J. O. Olowolafe, C. J. Mogab, R. B. Gregory, M. Kottke, J. Appl. Phys., 72(9), (1991) 4099 https://doi.org/10.1063/1.352242
  3. C. K. Hu, K. Y. Lee, L. Gignac, R. Carruthers, Stress in Induced Phenomena in Metallization, Fourth International Workshop (1998) 113
  4. C. W. Kanta et al., Proc. of 1991 VMIC (1991) 152
  5. J. J. Hsieh, R. V. Joshi, Advanced Metallization for ULSI Application (1993) 207
  6. N. Ito, Y. Yamada, Y. Murao, D. T. C. Huo, International VLSI Multilevel Interconnection Conference Proceedings (1994) 336
  7. G. A. Dixit, W. Y. Hsu, A. J. Konecni, S. Krishnan, J. D. Luttmer, R. H. Havemann, J. Forster, G. D. Yao, Narashimhan, Z. Xu, S. Ramaswami, F. S. Chen, International Electron Devices Meeting Technical Digest (1996) 357
  8. R. J. Contolini, L. Tarte, R. T. Graff, L. B. Evans, J. N. Cox, M. R. Pulich, J. D. Gee, X. C. Mu, C. Chiang, International VLSI Multilevel Interconnection Conference Proceedings (1995) 322
  9. W. J. Lee, J. S. Min, S. K. Rha, S. S. Chun, C. O. Park, D. W. Kim, J. Mater. Sci. Mater. El., 7 (1996) 111
  10. R. A. Brain, Ph. D. Thesis, California Institute of Technology (1996)
  11. D. W. Kim, G. J. Kim, I. H. Kweon, S. K. Rha, J. U. Park, J. Kor. Vac. Soci., 6(3) (1997) 206
  12. Dong-Won Kim, Kor. J. Mater. Res., 7(10) (1997) 884
  13. Dong-Won Kim, In-Ho Kweon, Kor. J. Mater. Res., 9(2) (1991) 124
  14. W. W. Mullins, Acta Metall, 6 (1958) 414 https://doi.org/10.1016/0001-6160(58)90020-8
  15. Seung-Yun Lee, Reflow and Agglomeration of Cu Thin Film for the Interconnect in Semiconductor Device, (1999) 31, 33, 57, 113
  16. C. V. Thomson, J. Appl. Phys., 58 (1985) 763 https://doi.org/10.1063/1.336194
  17. C. V. Thomson, Annu. Rev. Mater. Sci., 20 (1990) 245 https://doi.org/10.1146/annurev.ms.20.080190.001333
  18. J. D. McBrayer, R. M. Swanson, T. W. Sigmon, J. Electrochem. Soc., 133 (1986) 1242 https://doi.org/10.1149/1.2108827
  19. N. Toyama, Solid-State Electron., 26 (1983) 37 https://doi.org/10.1016/0038-1101(83)90159-4