DOI QR코드

DOI QR Code

Taxonomic Reappraisal of Sphacelaria rigidula and S. fusca (Sphacelariales, Phaeophyceae) Based on Morphology and Molecular Data with Special Reference to S. didichotoma

  • Keum, Yeon-Shim (Division of Life Science, Gyeongsang National University) ;
  • Oak, Jung-Hyun (Division of Life Science, Gyeongsang National University) ;
  • Draisma, Stefano G.A. (Universiteit Leiden Branch, Nationaal Herbarium Nederland) ;
  • van Reine, Willem F. Prud'homme (Universiteit Leiden Branch, Nationaal Herbarium Nederland) ;
  • Lee, In-Kyu (School of Biological Sciences, Seoul National University)
  • Published : 2005.03.31

Abstract

The taxonomic status of three closely related species of the genus Sphacelaria, S. rigidula Kützing, S. fusca (Hudson) C.F Gray and S. didichotoma Saunders was reassessed on the basis of morphological observations from herbarium specimens and phylogenetic analysis of RUBISCO spacer sequences. Sphacelaria rigidula was characterized by having only 2-armed propagules and somewhat slender filaments. Culture experiments revealed that its propagules commonly formed secondary arms, even though they were rarely produced in the field. It is concluded that S. divaricata Montagne characterized by dichotomously branched arms in propagules shoud be synonymized with S. rigidula, based on propagule morphology and measurements. Sphacelaria fusca clearly be separated from S. rigidula by having 2-4 armed propagules. These morphological differences were highly supported by the differences in the RUBISCO spacer sequences. S. didichotoma resembles S. rigidula in having propagules with two dichotomously branched arms. However, it commonly produces the secondary arms in the field. Additionally, this species has shorter primary arms than S. rigidula. Phylogenetic analyses supported the distinction of S. didichotoma from S. rigidula. The northwestern Pacific plants, previously recorded as S. divaricata, were recognized as S. didichotoma.

Keywords

References

  1. 기장서. 1998. 철원 북방 DMZ 내의 중영양호 토교저수지의 생태학적 연구: Peridinium 속을 중심으로 한 식물플랑크톤 군집구조의 계절적 천이. 한양대학교 석사학위논문. p.40
  2. 이경, 박지영, 한명수. 1996. 철원 북방 DMZ 내의 중영양호 토교저수지의 생태학적 연구 II. 식물플랑크톤 군집구조의 계절변화. 한국육수학회지 29: 241-246
  3. 이옥민. 1994. 주암호의 연간('92) 식물플랑크톤의 분포 및 현존량의 동태. 한국육수학회지 27: 327-337
  4. 이은주, 조규송. 1994. 소양호 식물플랑크톤의 연간변화. 한국육수학회지 27: 9-22
  5. 한명수, 이경, 유광일. 1995. 철원 북방 DMZ 내의 중영양호 토교저수지의 생태학적 연구 I. 넷트로 제작한 mesocosm에 대한 현장 시험. 한국육수학회지 28: 487-495
  6. Adachi M., Sako Y. and Ishida Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol. 32: 424-432 https://doi.org/10.1111/j.0022-3646.1996.00424.x
  7. Allen M.M. 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4: 1-4
  8. Charrel R.N., de Micco P. and de Lamballerie X. 1999. Convenient method to improve the graphical quality of phylogenetic trees computed by the MEGA program. Biotechniques 27: 702-704
  9. Daugbjerg N., Hansen G., Larsen J. and Moestrup O. 2000. Phylogeny of some of the major genera of dinoflagellate based on ultrastructure and partial LSD rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302-317 https://doi.org/10.2216/i0031-8884-39-4-302.1
  10. Elster H.-J. and Ohle W. 1968. Die Binnengewsser: Einzeldarstellungen aus der Limnologie und ihren Nachbargebieten. E (in German). E. Schweizerbart's Verlagsbuchhandlung, Stuttgart. pp. 179-252
  11. Gast R.J. and Caron D.A. 1996. Molecular phylogeny of symbiotic dinoflagellates from planktonic foraminifera and radiolaria. Mol. Biol. Evol. 13: 1192-1197 https://doi.org/10.1093/oxfordjournals.molbev.a025684
  12. Ginzburg B., Chalifa I., Zohary T., Hadas O., Dor I. and Lev O. 1998. Identification of oligosulfide odorous compounds and their source in the lake of Galilee. Wat. Res. 32: 1789-1800 https://doi.org/10.1016/S0043-1354(97)00396-5
  13. Inagaki Y., Dacks J.B., Doolittle W.F., Watanabe K.I. and Ohama T. 2000. Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis. Int. J. Syst. Evol. Microbiol. 50: 2075-2081 https://doi.org/10.1099/00207713-50-6-2075
  14. Kawabata Z. and Hirano Y. 1995. Growth pattern and cellular nitrogen and phosphorus contents of the dinoflagellate Peridinium penardii (Lemm.) causing a freshwater red tide in a reservoir. Hydrobiol. 312: 115-120 https://doi.org/10.1007/BF00020767
  15. Ki J.-S., Jang G.Y. and Han M.-S. 2004. Integrated method for single-cell DNA extraction, PCR amplification, and sequencing of ribosomal DNA from harmful dinoflagellates Cochlodinium polykrikoides and Alexandrium catenella. Mar. Biotechnol (in press)
  16. Ki J.-S., Cho S.Y. and Han M.-S. 2005. Morphological characteristics of Peridinium bipes f. occcultatum (Dinophyceae) isolated from three geographically segregated aquatic systems of Korea. Korean J. Limnol. (in press)
  17. Pin L.C.. Teen L.P., Ahmad A. and Usup G. 2001. Genetic diversity of Ostreopsis ovata (Dinophyceae) from Malaysia. Mar. Biotechnol. 3: 246-255 https://doi.org/10.1007/s101260000073
  18. Pollingher U. and Serruya C. 1976. Placed division of Peridinium cinctum f. westii (Dinophyceae) and development of the lake Kinneret (Israel) bloom. J. Phycol. 12: 162-170
  19. Saitou N. and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  20. Saldarriaga J.F., Leander B.S., Taylor F.J.R. and Keeling P.J. 2003. Lessardia elongata gen. et sp. nov. (Dinoflagellata, Peridiniales, Podolampaceae) and the taxonomic position of the genus Roscoffia. J. Phycol. 39: 368-378 https://doi.org/10.1046/j.1529-8817.2003.02113.x
  21. Saldarriaga J.F., Taylor F.J.R., Cavalier-Smith T., Menden-Deuer S. and Keeling P.J. 2004. Molecular data and the evolutionary history of dinoflagellates. Eur. J. Protistol. 40: 85-111 https://doi.org/10.1016/j.ejop.2003.11.003
  22. Saldarriaga J.F., Taylor F.J.R., Keeling P.J. and Cavalier-Smith T. 2001. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J. Mol. Evol. 53: 204-213 https://doi.org/10.1007/s002390010210
  23. Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A laboratory manual. Cold Spring Harbor, New York, Cold Spring Harbor Press
  24. Saunders G.W., Hill D.R., Sexton J.P. and Andersen R.A. 1997. Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. In: Bhattacharya D. (ed.), Origins of Algae and Their Plastids, Springer-Verlag Wien, New York, pp. 237-259
  25. Wynne D., Patni N.J., Aaroson S. and Berman T. 1982. The relationship between nutrient status and chemical composition of Peridinium cinctum during the bloom in lake Kinnert. J. Plank. Res. 4: 125-140 https://doi.org/10.1093/plankt/4.1.125

Cited by

  1. A revised classification of the Sphacelariales (Phaeophyceae) inferred from apsbC andrbcL based phylogeny vol.45, pp.3, 2010, https://doi.org/10.1080/09670262.2010.490959
  2. The Red Algal Genus Scinaia (Nemaliales; Rhodophyta) on the Gulf of California, Mexico: a Taxonomic Account vol.48, pp.3, 2009, https://doi.org/10.2216/08-82.1
  3. Utility of rbcS gene as a novel target DNA region for brown algal molecular systematics vol.59, pp.1, 2011, https://doi.org/10.1111/j.1440-1835.2010.00596.x