Influence of NaCl on the Growth and Metabolism of Halomonas salina

  • YUN , SU-HEE (Department of Biological Engineering, Seokyeong University) ;
  • SANG , BYUNG-IN (Division of Water Environment and Remediation, KIST) ;
  • PARK, DOO-HYUN (Department of Biological Engineering, Seokyeong University)
  • 발행 : 2005.02.01

초록

In this research, we examined the effect of NaCl on the growth, energy metabolism, and proton motive force of Halomonas salina, and the effect of compatible solutes on the bacterium growing in the high salinity environment. H. salina was isolated from seawater and identified by 16srDNA sequencing. The growth of H. salina was not enhanced by the addition of external compatible solutes (choline and betaine) in the high salinity environment. The resting cells of H. salina absorbed more glucose in the presence of 2.0 M NaCl than in its absence. H. salina did not grow in the medium with either KCl, RbCl, CsCl, $Na_2SO_4$, or $NaNO_3$, in place of NaCl. The optimal concentration of NaCl for the growth of H. salina ranged from 1.4 M to 2.5 M, and the growth yield was decreased in the presence of NaCl below 1.4M and above 2.5M. The activity of isocitrate dehydrogenase, pyruvate dehydrogenase, and malate dehydrogenase of H. salina was not inhibited by NaCl in in vitro test. The proton translocation of H. salina was detected in the presence of NaCl only. These results indicate that NaCl is absolutely required for the normal growth and energy metabolism of H. salina, but the bacterial growth is not enhanced by the compatible solutes added to the growth medium.

키워드

참고문헌

  1. Adams, R., J. Bygraves, M. Kogul, and N. J. Russell. 1987. The role of osmotic effects in haloadaptation of Vibrio costicola. J. Gen. Microbiol. 133: 1861- 1870
  2. Canovas, D., C. Vargas, L. N. Csonka, A. Ventosa, and J. J. Nieto. 1996. Osmoprotectants in elongata: High-affinity betaine transport system and choline-betaine pathway. J. Bacteriol. 12: 7221-7226
  3. Canovas, D., C. Vargas, L. N. Csonka, A. Ventosa, and J. J. Nieto. 1998. Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl. Environ. Microbiol. 64: 4095-4097
  4. Choquet, C. G., I. Ahoshai, M. Klein, and D. J. Kushner. 1991. Formation and role of glycine betaine in the moderate halophile Vibrio costicola: Site for action of $Cl^-$ ions. J. Bacteriol. 171: 880- 886
  5. Ciulla, R. A, M. R. Diza, B. F. Taylor, and M. F. Roberts. 1997. Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment. Appl. Environ. Micrbiol. 63: 220- 226
  6. Cummings, S. P. and D. J. Gilmour. 1995. The effect of NaCI on the growth of Halomonas species: Accumulation and utilization of compatible solutes. Microbiology 141: 1413-1418 https://doi.org/10.1099/13500872-141-6-1413
  7. Del Mora, A., J. Severin, A. Ramos-Cormenzana, H. G. Truper, and E. A. Galinski. 1994. Compatible solutes in new moderately halophilic isolates. FEMS Microbiol. Lett. 122: 165- 172 https://doi.org/10.1111/j.1574-6968.1994.tb07160.x
  8. Fitz, R. M. and H. Cypionka. 1989. A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch. Microbiol. 152: 369- 375 https://doi.org/10.1007/BF00425175
  9. Frings, E., T. Sauer, and E. A. Glinski. 1995. Production of hydroxyectoin: High cell-density cultivation and osmotic downshock of Marinococcus strain M52. J. Biotechnol. 43: 53- 61 https://doi.org/10.1016/0168-1656(95)00119-2
  10. Gadd, G. M., E. P. Burford, and M. Fomina. 2003. Biogeochemical activities of microorganisms in mineral transformations: Consequences for metal and nutrient mobility. J. Microbiol, Biotechnol. 13: 323- 332
  11. Galinski, E. A. 1995. Osmoadaptation in bacteria. Adv. Microb. Physiol, 19: 273- 328 https://doi.org/10.1016/S0065-2911(08)60148-4
  12. Grarnrnann, K., A. Volke, and H. J. Kunte. 2002. New type of osmoregulated solute transporter identified in Halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM2581. J. Bacteriol. 184: 3078- 3085 https://doi.org/10.1128/JB.184.11.3078-3085.2002
  13. Kamekura, M. and H. Omishi. 1982. Cell-associated cations of the moderate halophile Micrococcus varians ssp. Halophilus grown in media of thigh concentration of LiCl, NaCl, KCl, RbCl or CsCl. Can. J. Microbiol. 28: 155-161 https://doi.org/10.1139/m82-020
  14. Ken-Dror, S., J. K. Lanyi, B. Schobert, B. Silver, and Y. Avi-Dor. 1986. An NADH:quinone oxidoreductase of the halotolerant bacterium Bal is specifically dependent on sodium ions. Arch. Biochem. Biophys. 244: 766- 772 https://doi.org/10.1016/0003-9861(86)90645-4
  15. Ken-Dror, S., R. Preger, and Y. Avi-Dor. 1986. Functional characterization of the uncoupler-insensitive Na+ pump of the halotolerant bacterium, Bal. Arch. Biochem. Biophys. 244: 122- 127 https://doi.org/10.1016/0003-9861(86)90100-1
  16. Kim, Y.-M., I.-K. Rhee, and T. Tsuchiya. 2004. Cloning of a novel $Na^{+}-dependent$ L-serine specific symporter gene from Haemophilus influenzae Rd and characteristics of the transporter. J. Microbiol. Biotechnol. 14: 520- 524
  17. Kraegeloh, A. and H. J. Kunte. 2002. Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles 6: 453- 462 https://doi.org/10.1007/s00792-002-0277-4
  18. Lee, Y. J., K. H. Cho, and Y. J. Kim. 2003. The membranebound NADH: Ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudomonas nautical. J. Microbiol. Biotechnol. 13: 255- 259
  19. Mljica, F. J., E. Cisneros, C. Ferrer, F. R. Valera, and G. Juez. 1997. Osmotically induced response in representatives of halophilic prokaryotes: The bacterium Halomonas elongata and the archaeon Haloferax volcanii. J. Bacteriol. 179: 5471- 5481 https://doi.org/10.1128/jb.179.17.5471-5481.1997
  20. Onishi, H., T. Kobayashi, N. Morita, and M. Baba. 1984. Effect of salt concentration on the cadmium tolerance of a moderately halophilic cadmium tolerant Pseudomonas sp. Agric. Biol. Chem. 48: 2441- 2448 https://doi.org/10.1271/bbb1961.48.2441
  21. Ono, H., K. Sawadas, N. Khunajakr, T. Tao, M. Yamamoto, M. Hiramoto, A. Shinrnyo, M. Takano, and Y. Murooka. 1999. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J. Bacteriol. 181: 91- 99
  22. Orea, A. 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol. 73: 41- 48 https://doi.org/10.1111/j.1574-6968.1990.tb03923.x
  23. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410
  24. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292- 1297 https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  25. Quesada, E., V. Bejar, M. J. Valderrama, and A. RamosCormenzana. 1987. Growth characteristics and salt requirement of Deleya halophila in a defined medium. Curr. Microbiol. 16:21-25 https://doi.org/10.1007/BF01568164
  26. Vreeland, R. H. and E. L. Martia. 1980. Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Can. J. Microbiol. 26: 746- 752 https://doi.org/10.1139/m80-130
  27. Werthamer, S., A. Prieber, and L. Amaral. 1973. Quantitation of lactate dehydrogenase isoenzyme patterns of the developing human fetus. Clin. Chim. Acta 45: 5-11 https://doi.org/10.1016/0009-8981(73)90137-X