Comparative Studies on Growth and Phosphatase Activity of Endolithic Cyanobacterial Isolates of Chroococcidiopsis from Hot and Cold Deserts

  • BANERJEE, MEENAKSHI (Laboratory of Algal Biotechnology, Department of Bioscience, Barkatullah University) ;
  • DEBKUMARI, SHARMA (Laboratory of Algal Biotechnology, Department of Bioscience, Barkatullah University)
  • Published : 2005.02.01

Abstract

The growth and phosphatase (phosphomonoesterase) activity of Chroococcidiopsis culture isolated from the cryptoendoliths of the Antarctic were compared with a similar isolate from the Arizona hot desert. Such cyanobacteria living inside rocks share several features with the immobilized cells produced in the laboratory. This study has relevance because the availability of phosphorus is a key factor influencing the growth of these cyanobacteria in nature, in such unique ecological niches as the hot and cold deserts. Phosphatase activity therefore is of particular importance for these organisms if they are to survive without any other source of phosphorus availability. Also, there is paucity of knowledge regarding this aspect of study in cyanobacterial cultures from these extreme environments. The salient feature of this study shows the importance of specific pH and temperatures for growth and phosphatase activity of both cultures, although there were marked differences between the two isolates. The pH and temperature optima for growth and phosphatase activity (PMEase) of Chroococcidiopsis 1 and 2 were 9.5, $240^{\circ}C$ and 8.5, $40^{\circ}C$ respectively. The $K_m and V_max$ values of cultured Chroococcidiopsis 1 showed lower affinity of PMEase for the substrate compared to the enzyme affinity of the same organism when found within the rocks; Chroococcidiopsis 2 and Arizona rocks containing the same alga however showed similar affinity of PMEase for the substrate. An interesting observation was the similarity in response of immobilized Chroococcidiopsis 1 culture and the same organism in the Antarctic rocks to low light and low temperature stimulation of PMEase. This thermal response seems to be related to the ability of the immobilized Antarctic isolate and the rocks to either cryoprotect the PMEase or undergo a change to save the enzyme from becoming nonfunctional under low temperatures. The free cells of Chroococcidiopsis 1 culture however did not show such responses.

Keywords

References

  1. Avrarnescu, A., R. Rouillon, and R. Carpentier. 1999. Potential for use of a cyanobacterium Synechocystis sp. immobilized in poly vinyl alcohol: Application to the detection of pollutants. Biotechnology Techniques 13(8): 559- 562 https://doi.org/10.1023/A:1008991531206
  2. Banerjee, M., B. A. Whitton, and D. D. Wynn-Williams. 2000. Surface phosphomonoesterase activity of a natural immobilized system: Chroococcidiopsis in an Antarctic desert rock. J. Appl. Phycol. 12: 549- 552 https://doi.org/10.1023/A:1008113932640
  3. Banerjee, M., B. A. Whitton, and D. D. Wynn-Williams. 2000. Phosphatase activities of endolithic communities in rocks of Antarctic dry valleys. Microb. Ecol. 39: 80- 91 https://doi.org/10.1007/s002489900188
  4. Bell, R. A. and M. R. Sommerfield. 1987. Algal biomass and primary production within a temperature zone sandstone. Am. J. Bot. 74: 294- 297 https://doi.org/10.2307/2444032
  5. Budel, B., U. Luttge, R. Stelzer, O. Huber, and E. Medina. 1994. Cyanobacteria of rocks and soil of the Orinoco lowlands and the Guayana uplands, Venezuela. Botanica Acta 107: 422- 431 https://doi.org/10.1111/j.1438-8677.1994.tb00817.x
  6. Chu, S. P. 1942. The influence of mineral composition of the medium on the growth of planktonic algae. I. Methods and culture media. J. Ecol. 30: 284- 325 https://doi.org/10.2307/2256574
  7. Cockell, C. S., P. Rettberg, G. Horneck, M. R. Patel, H. Lamrner, and C. Cordoba-Jabonero. 2002. Ultrviolet protection in micro-habitats; lessons from the terrestrial poles applied to Mars. ESA SP 518: 215- 218
  8. de la Torre, J. R., B. M. Goebel, E. L. Friedmann, and N. R. Pace. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo dry valleys Antarctica. Appl. Environ. Microbiol. 69(7): 3858- 3867 https://doi.org/10.1128/AEM.69.7.3858-3867.2003
  9. Eisenreich, S. J., R. T. Bannerman, and D. E. Amstrong. 1975. A simplified phosphorus analysis technique. Environ. Lett. 9: 43- 53 https://doi.org/10.1080/00139307509437455
  10. Fischer, D., U. G. Schlosser, and P. Pohl. 1997. Exopolysaccharide production by cyanobacteria grown in enclosed photobioreactors and immobilized using white cotton towelling. J. Appl. Phycol. 9: 205-213 https://doi.org/10.1023/A:1007993507915
  11. Friedmann, E. I. 1978. Melting snow in the Dry Valley is the source of water for endolithic microorganisms. Antarct. J. U. S. 13: 162- 163
  12. Friedmann, E. I. 1982. Endolithic microorganism in the Antarctic cold desert. Science 215: 1045- 1053 https://doi.org/10.1126/science.215.4536.1045
  13. Friedmann, E. I. and R. Ocampo. 1976. Endolithic blue green algae in the Dry Valley. Primary producers in the Antarctic desert ecosystem. Science 193: 1247- 1249 https://doi.org/10.1126/science.193.4259.1247
  14. Friedmann, E. I., A. Y. Druk, and C. P. Mckay. 1994. Limits of life and microbial extinction in the antarctic desert. Antarct. J. U. S. 29: 176- 179
  15. Gibson, M. T. and B. A. Whitton. 1987. Influence of phosphorus on morphology and physiology of fresh water Chaetophora, Drapamaldia and Stigeoclonium (Chaetophorales, chlorophyta). Phycologia 26: 59- 69 https://doi.org/10.2216/i0031-8884-26-1-59.1
  16. Kratz, W. A and J. Myers. 1955. Nutrition and growth of several blue green algae. Am. J. Bot. 42: 282- 287 https://doi.org/10.2307/2438564
  17. Mackinney, G. 1941. Absorption of light by chlorophyll. J. Biol. Chem. 140: 315- 322
  18. Mahasneh. I. A, S. L. J. Grainger, and B. A Whitton. 1990. Influence of salinity on hair formation and phosphatase activity of the blue green alga (Cyanobacterium) Calothrix viguieri D253. Br. Phycol. J. 25: 25- 32 https://doi.org/10.1080/00071619000650021
  19. Marker, A. F. H. 1995. Chlorophyll Analysis, Standard Methods. National Rivers Authority, Bristol, U.K.
  20. McKay, C. P., E. I. Friedmann, B. Gomez-Silva, L. Caceres-Villanueva, D. T. Anderson, and R. Landheim. 2003. Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: Four years of observations including the EL Nino of 1997- 1998. Astrobiology 3(2): 393-406 https://doi.org/10.1089/153110703769016460
  21. Nienow, J. A and E. I. Friedmann. 1993. Terrestriallithophytic (rock) communities, pp. 353-412. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, U.S.A.
  22. Patel, M. R., A. Berces, C. Kolb, P. Rettberg, J. C. Zarnecki, and F. Selsis. 2003. Seasonal and diurnal variation in Martian surface UV irradiation: Biological and chemical implications for the Martian regolith. Int. J. Astrobiol. 2(1): 21-34 https://doi.org/10.1017/S1473550402001180
  23. Potts, M. 1994. Desiccation resistance of prokaryotes. Microbiol. Rev. 58: 755- 805
  24. Romo, S. and C. Perez Martinez. 1997. The use of immobilization in alginate beads for long-term storage of Pseudoanabaena galeata (Cyanobacteria) in the laboratory. J. Phycol. 33: 1073- 1076 https://doi.org/10.1111/j.0022-3646.1997.01073.x
  25. Ronto, G., A Berces, H. Larnrner, C. S. Cockell, G. J. Molina-Cuberos, M. R. Patel, and F. Selsis. 2003. Solar UV irradiation conditions on the surface of Mars. Photochem. Photobiol. 77(1): 34- 40 https://doi.org/10.1562/0031-8655(2003)077<0034:SUICOT>2.0.CO;2
  26. Singh, S. P., S. K. Verma, R. K. Singh, and P. K. Pandey. 1989. Copper uptake by free and immobilized cyanobacterium. FEMS Microbiol. Lett. 60: 193- 196 https://doi.org/10.1111/j.1574-6968.1989.tb03444.x
  27. Vincent, W. F. 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge Press, pp. 304
  28. Whitton, B. A., S. L. J. Grainger, G. R. W. Hawley, and J. W. Simon. 1991. Cell bound and extracellular phosphatase activities of cyanobacterial isolates. Microb. Ecol. 21: 85-98 https://doi.org/10.1007/BF02539146
  29. Wilkinson, S. C., K. H. Goulding, and P. K. Robinson. 1990. Mercury removal by immobilized algae in batch culture systems. J. Appl. Phycol. 2: 223- 230 https://doi.org/10.1007/BF02179779
  30. Williams, D. D. 2000. Cyanobacteria in desert-life at limits, pp. 341- 366. In Whitton, B. A and M. Potts M (eds.), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer, Dordrecht
  31. Wynn-Williams, D. D., N. C. Russell, and H. G. M. Edwards. 1997. Moisture and habitat structure as regulator for microalgal colonists in diverse Antarctic terrestrial habitats, pp. 77- 88. In W. B. Lyons, C. Howard-Williams, and I. Hawes (eds.), Ecosystems in Antarctic Ice free Landscapes. Balkerna, Rotterdam