Construction of Comprehensive Metabolic Network for Glycolysis with Regulation Mechanisms and Effectors

  • JIN, JONG-HWA (Department of Chemical Engineering, Kwangwoon University) ;
  • JUNG, UI-SUB (Department of Chemical Engineering, Kwangwoon University) ;
  • JAE, WOOK-NAM (School of Chemical Engineering, Seoul National University) ;
  • IN, YONG-HO (Bioinformatix Inc., Eighth Floor, Sung Woo Bldg.) ;
  • LEE, SANG-YUP (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • LEE, DOHE-ON (Department of Biosystems, Korea Advanced Institute of Science and Technology) ;
  • LEE, JIN-WON (Department of Chemical Engineering, Kwangwoon University)
  • Published : 2005.02.01

Abstract

Abstract Glycolysis has a main function to provide ATP and precursor metabolites for biomass production. Although glycolysis is one of the most important pathways in cellular metabolism, the details of its regulation mechanism and regulating chemicals are not well known yet. The regulation of the glycolytic pathway is very robust to allow for large fluxes at almost constant metabolite levels in spite of changing environmental conditions and many reaction effectors like inhibitors, activating compounds, cofactors, and related metal ions. These changing environmental conditions and metabolic reaction effectors were focused on to understand their roles in the metabolic networks. In this study, we have investigated for construction of the regulatory map of the glycolytic metabolic network and tried to collect all the effectors as much as possible which might affect the glycolysis metabolic pathway. Using the results of this study, it is expected that a complex metabolic situation can be more precisely analyzed and simulated by using available programs and appropriate kinetic data.

Keywords

References

  1. Babul, J. D., C. M. Kretschmer, and D. G. Fraenkel. 1993. Glucose metabolism in Escherichia coli and the effect of increased amount of aldolase. Biochemistry 32: 4685- 4692 https://doi.org/10.1021/bi00068a029
  2. Fell, D. 1997. Understanding the Control of Metabolism, pp. 197 - 219. Portland Press Ltd., London, U.K
  3. Flynn, I. W. and I. B. R. Bowman. 1980. Purification and characterization of pyruvate kinase from Trypanosoma brucei. Arch. Biochem. Biophys. 200: 401- 409 https://doi.org/10.1016/0003-9861(80)90370-7
  4. Fujita, S. C., T. Oshima, and K. Imahori. 1976. Purification and properties of D-glyceraldehyde-3-phosphate dehydrogenase from an extreme thermophile, Thermus thermophilus strain HB8. Eur. J. Biochem. 64: 57- 68 https://doi.org/10.1111/j.1432-1033.1976.tb10274.x
  5. Goldberg, R. N., Y. B. Tewari, D. K. Bell, and J. A. Fazio. 1993. Thermodynamics of enzyme-catalyzed reactons: Part l. Oxidoreductases. J. Phys. Chem. 22: 505- 582
  6. Goldberg, R. N., and Y. B. Tewari. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 1. Lyases. J. Phys. Chem. 24: 1669- 1698
  7. Goldberg, R. N. and Y. B. Tewari. 1995. Thermodynamics of enzyme-catalyzed reactions: Part 5. Isomerases and ligases. J. Phys. Chem. 24: 1765- 1801
  8. Goldberg, R. N. 1999. Thermodynamics of enzymecatalyzed reaction: Part 6. Update. J. Phys. Chem. 28: 931-965
  9. Green, F. C. and R. E. Feeney. 1970. Properties of muscle glyceraldehyde-3-phosphate dehydrogenase from the coldadapted antarctic fish Dissostichus mawsoni. Biochim. Biophvs. Acta 220: 430- 442 https://doi.org/10.1016/0005-2744(70)90274-3
  10. http://biocyc.org/
  11. http://www.biocarta.com/genes/allPathways.asp
  12. http://www.brenda.uni-koeln.de/
  13. http://www.empproject.com/
  14. http://www.genome.ad.jp/kegg/metabolism.html
  15. http://www.gwu.edu/-mpb/
  16. http://www.informatics.jax.org/searches
  17. http://www.tcd.ie/Biochemistry/IUBMB-Nicholson/
  18. Hynne, F., S. Dano, and P. G. Sorensen. 2001. Full-scale model of glycolysis in Saccharomyces cerevisiae. J. Biol. Chem. 94: 121- 163
  19. Hynne, F., P. G. Sorensen, and T. Moller. 1993. Current and eigenvector analysis of chemical reaction networks at Hopf bifurcations. J. Chem. Phys. 98: 211- 218 https://doi.org/10.1063/1.464657
  20. Kombrink, E. 1982. Chloroplast phosphofructokinase in the green alga, Dunaliella marina: Partial purification and kinetic and regulatory properties. Arch. Biochern. Biophys. 213: 602-619 https://doi.org/10.1016/0003-9861(82)90590-2
  21. Lee, C. S. and W. J. O'Sullivan. 1975. Properties and mechanism of human erythrocyte phosphoglycerate kinase. J. Biol. Chem. 250: 1275- 1281
  22. Lee, S. Y., S. H. Hong, and S. Y. Moo. 2002. In silico metabolic pathway analysis and design: Succinic acid production by metabolically engineered Escherichia coli an example. Genome Informatics 13: 214- 223
  23. Marcel, H. N., J. C. Hoefnagel, D. M. Starrenburg, M. K. Jeroen Hugenholtz, V. R. Iris, V. W. Hans, and L. S. Jacky. 2002. Metabolic engineering of lactic acid bacteria the combined approach: Kinetic modeling metabolic control and experimental analysis. Microhiology 148: 1003- 1013
  24. Montignv, C. and J. Sygusch. 1996. Functional characterization of an extreme thermophilic class II fructose 1,6-bisphosphate aldolase. Eur. J. Biochem. 241: 243- 248 https://doi.org/10.1111/j.1432-1033.1996.0243t.x
  25. Nakagawa, T. and F. Nagayama. 1991. Enzymatic properties of enolase from fish muscle. Comp. Biochem. Physiol. 98: 355- 359 https://doi.org/10.1016/0300-9629(91)90547-P
  26. Cornpbell, N. A., L. G. Mitchell, and J. B. Reece. 1999. Biology, pp. 518- 519. 3rd Ed. San Francisco, U.S.A
  27. Pelzer, R. B., S. Wiegand, and C. Scharrenberger. 1994. Plastid class and cytosol class II aldolase of Euglena gracilis. Plant Physiol.106: 1137-1144 https://doi.org/10.1104/pp.106.3.1137
  28. Sakai, H., K. Suzuki, and K. lmahori. 1986. Purification and properties of pyruvate kinase from Bacillus stearothennophilus. J. Biochem. 99: 1157- 1167 https://doi.org/10.1093/oxfordjournals.jbchem.a135579
  29. Stephanopoulos, G. N., A. Aristidou, and J. Nielsen. 1998. Metabolic Engineering: Principles and Methodologies, pp. 38- 45. Academic Press, San Diego, U.S.A
  30. Stocchi, V. M., F. C. Magnani, and G. Fomaini. 1982. Multiple forms of human red blood cell hexokinase: Preparation, characterization, and age dependence. J. Biol. Chem. 257: 2357- 2364
  31. Thomas, D. A. 1981. Partial purification and characterization of glucose-6-phosphate isomerase from Dictyostelium discoideum. J. Gen. Microbiol. 124: 403- 407