Optimization of Chitosan-Alginate Encapsulation Process Using Pig Hepatocytes or Development of Bioartificial Liver

  • LEE , JI-HYUN (Samsung Biomedical Research Institute) ;
  • LEE, DOO-HOON (Department of Chemical Engineering, Dongguk University) ;
  • SON, JEONG-HWA (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • PARK, JUNG-KEUG (Department of Chemical Engineering, Dongguk University) ;
  • KIM, SUNG-KOO (Department of Biotechnology and Bioengineering, Pukyong National University)
  • 발행 : 2005.02.01

초록

Chitosan-alginate capsules were formed by electrostatic interactions and exhibited an appropriate mechanical strength, permeability, and stability for the culture of hepatocytes. Pig hepatocytes were isolated and hepatocyte spheroids formed and immobilized in chitosan-alginate capsules. An encapsulation procedure of 3 min and spheroid formation period of 24 h were the optimum conditions for the best liver functions. Pig hepatocytes with a cell density of $6.0{\tomes}10^6$ cells/ml in the capsules were found to be most suitable for application in a bioartificial liver support system. The encapsulated pig hepatocyte spheroids exhibited stable ammonia removal and urea secretion rates in a bioreactor for 2 weeks. Accordingly, chitosan-alginate encapsulated hepatocyte spheroids in a packed-bed bioreactor would appear to have potential as a bioartificial liver.

키워드

참고문헌

  1. Colton, C. K. 1996. Engineering challenges in cell-encapsulation technology. Trends Biotechnol. 14: 158-162 https://doi.org/10.1016/0167-7799(96)10021-4
  2. Goosen, M. F. A., G. M. O'Shea, H. M. Gharapetian, and S. Chou. 1985. Optimization of microencapsulation parameters: Semipermeable microcapsules as a bioartificial pancreas. Biotechnol. Bioeng, 27: 148- 150 https://doi.org/10.1002/bit.260270207
  3. Heo, T. R., W. K. Yu, J. Y. Kim, and K. Y. Lee. 2002. High cell density cultivation of Bifidobacterium longum using a calcium carbonate-alginate beads system. J. Microbiol. Biotechnol. 12: 444- 439
  4. Joly, A., J. F. Desjardins, and B. Fremond. 1997. Survival, proliferation, and functions of porcine hepatocytes encapsulated in coated alginate beads: A step toward a reliable bioartificial liver. Transpl. Int. 63: 795- 803 https://doi.org/10.1097/00007890-199703270-00002
  5. Kamlot, A., J. Rozga, F. D. Watanabe, and A. A. Demetriou. 1996. Review: Artificial liver support systems. Biotechnol. Bioeng. 50: 382- 391 https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4<382::AID-BIT5>3.0.CO;2-H
  6. Kim, J. H., H. J. Kim, J. H. Son, H. N. Chun, J. O. Yang, S. J. Choi, N. S. Paek, G. H. Choi, and S. K. Kim. 2003. Effect of Lactobacillus fermentum MG590 on alcohol metabolism and liver function in rats. J. Microbiol. Biotechnol. 13: 919- 925
  7. Kim, S. K. and C. Rha. 1990. Chitosan for the encapsulation of mammalian cell culture, pp. 617- 626, In G. Skjak-brek, T. Anthonsen, and P. Sandford (eds.). Chitin and Chitosan. Elsevier Applied Sceince London and New York, U.S.A.
  8. Kim, S. K. and C. Rha. 1990. Transmembrane permeation of proteins in chitosan capsules, pp. 635- 642. In G. Skjak-brek, T. Anthonsen, and P. Sandford (eds.). Chitin and Chitosan. Elsevier Applied Sceince London and New York, U.S.A.
  9. Kim, S. K., J. H. Son, and S. H. Yu. 1997. Encapsulated animal cell culture for the production of monoclonal antibody (MAb). Biotechnol. Bioprocess Eng. 2: 73-76 https://doi.org/10.1007/BF02932327
  10. Kim, S. K., S. H. Yu, J. H. Son, H. Hubner, and R. Buchholz. 1998. Calculations on $O_2$ transfer in capsules with animal cells for the determination of maximum capsule size without $O_2$ limitation. Biotechnol. Lett. 20: 549- 552 https://doi.org/10.1023/A:1005341526365
  11. Kim, S. K., J. H. Choi, E. A Balmaceda, and C. Rha. 1999. Chitosan, pp. 151- 172. In W. M. Kuhtreiber, R. P. Lanza, and W. Chick (eds.). Cell Encapsulation Technology and Therapeutics. Birkhaeuser Boston, Basel and Berlin
  12. Kim, S. K., S. H. Yu, J. H. Lee, J. Y. Lee, A Rademacher, D. H. Lee, and J. P. Park. 2001. Effect of collagen concentration on the viability and metabolic function of encapsulated hepatocytes. J. Microbiol. Biotechnol. 11: 423- 427
  13. Kim, T. H., Y. H. Park, K. J. Kim, and C. S. Cho. 2003. Release of albumin from chitosan-coated pectin beads in vitro. Int. J. Pharm. 250: 371- 383 https://doi.org/10.1016/S0378-5173(02)00553-7
  14. Koebe, H. G., S. A. Pahernik, M. Sproede, W. E. Thasler, and F. W. Schildberg. 1995. Porcine hepatocytes from slaughterhouse organs. An unlimited resource for bioartificial liver devices. ASAIO J. 41: 189- 193 https://doi.org/10.1097/00002480-199541020-00012
  15. Lee, D.H., J. H. Lee, J. E. Choi, Y. J. Kim, S. K. Kim, and J. K. Park. 2002. Determination of optimum aggregates of porcine hepatocytes as a cell source of a bioartificial liver. J. Microhiol. Biotechnol. 12: 735- 739
  16. Lim, F. and A. M. Sun. 1980. Microencapsulation islets as bioartificial endocrine pancreas. Science 210: 908- 910 https://doi.org/10.1126/science.6776628
  17. Matthew, H. W., S. O. Salley, W. D. Peterson, and M. D. Klein. 1993. Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol. Prog. 9: 510- 519 https://doi.org/10.1021/bp00023a010
  18. Muraca, M., M. T. Vilei, E. Zanusso, C. Ferraresso, A. Granato, S. Doninsegna, R. D. Monte, P. Carraro, and G. Carturan. 2000. Encapsulation of hepatocytes by SiO. Transplant. Proc. 32: 2713- 2714 https://doi.org/10.1016/S0041-1345(00)01852-2
  19. Nagamori, S., S. Hasumura, T. Matsuura, H. Aizaki, and M. Kawada. 2000. Developments in bioartificial liver research: Concepts, performance, and applications. J. Gastroenterol. 35: 493- 503 https://doi.org/10.1007/s005350070071
  20. Nagasue, N., H. Yukaya, Y. Ogawa, H. Kohno, and T. Nakamura. 1987. Human liver regeneration after major hepatic resection: A study of normal liver and livers with chronic hepatitis and cirrhosis. Ann. Surg. 206: 30- 39 https://doi.org/10.1097/00000658-198707000-00005
  21. Ohshima, N., H. Miyoshi, K. Yanagi, and H. Fukuda. 1994. Long-term continuous culture of hepatocytes in a packed-bed reactor utilizing porous resin. Biotechnol. Bioeng. 43: 635- 644 https://doi.org/10.1002/bit.260430713
  22. Riordan, S. M. and R. Williams. 1999. Extracorporeal support and hepatocyte transplantation in acute liver failure and cirrhosis. J. Gastroenterol. Hepatol. 14: 757- 770 https://doi.org/10.1046/j.1440-1746.1999.01945.x
  23. Singh, Y. 2003. Photosynthetic activity, and lipid and hydrocarbon production by alginate-immobilized cells of Botryococcus in relation to growth phase. J. Microbiol. Biotechnol. 13: 687-691
  24. Tay, L. F, L. K. Khoh, C. S. Loh, and E. Khor. 1993. Aiginate-chitosan coacervation in production of artificial seeds. Biotechnol. Bioeng. 42: 449-454 https://doi.org/10.1002/bit.260420407
  25. Wu, F. J., J. R. Friend, C. C. Hsiao, M. J. Zilliox, W. J. Ko, F. B. Cerra, and W. S. Hu. 1996. Efficient assembly of rat hepatocyte spheroids for tissue engineering applications. Biotechnol. Bioeng. 50: 404- 415 https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4<404::AID-BIT7>3.0.CO;2-P
  26. Yagi, K., N. Michibayashi, N. Kurikawa, Y. Nakashima, T. Mizoguchi, A. Harada, S. Higashiyama, H. Muranaka, and M. Kawase. 1997. Effectiveness of fructose-modified chitosan as a scaffold for hepatocytes attachment. Chem. Pharm. Bull. 20: 1290- 1294 https://doi.org/10.1248/bpb.20.1290
  27. Yin, C., S. M. Chia, C. H. Quek, H. Yu, R. X. Zhuo, K. W. Leong, and H. Q. Mao. 2003. Microcapsules with improved mechanical stability for hepatocyte culture. Biomaterials 24: 1771-1780 https://doi.org/10.1016/S0142-9612(02)00580-X
  28. Yu, S. H., R. Buchholz, and S. K. Kim. 1999. Encapsulation of rat hepatocyte spheroids for the development of artificial liver. Biotechnol. Tech. 13: 609- 614 https://doi.org/10.1023/A:1008922607119