DOI QR코드

DOI QR Code

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

  • Lee, Joo-Hee (Department of Molecular Biology, Sejong University) ;
  • Kim, Sun-Hyung (Research Institute of Agricultural Resources, Ishikawa Agricultural College) ;
  • Jung, Young-Ho (Department of Molecular Biology, Sejong University) ;
  • Kim, Jung-A (Department of Molecular Biology, Sejong University) ;
  • Lee, Mi-Ok (Department of Molecular Biology, Sejong University) ;
  • Choi, Pil-Gyu (Department of Molecular Biology, Sejong University) ;
  • Choi, Woo-Bong (Departments of Biotechnology and Bioengineering/Biomaterial Control, Dongeui University) ;
  • Kim, Kyung-Nam (Department of Molecular Biology, Sejong University) ;
  • Jwa, Nam-Soo (Department of Molecular Biology, Sejong University)
  • Published : 2005.01.01

Abstract

A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

Keywords

References

  1. Agrawal, G K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. 2001. Signaling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defense/stress response. Plant Physiol. Biochem. 39:1095-1103 https://doi.org/10.1016/S0981-9428(01)01333-X
  2. Agrawal, G K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. 2002a. Effects of signaling molecules, protein phosphatase inhibitors, and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipids hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283:227-236 https://doi.org/10.1016/S0378-1119(01)00854-X
  3. Agrawal, G. K., Rakwal, R. and Iwahashi, H. 2002b. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAPkinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. Biophys. Res. Commun. 294: 1009-1016 https://doi.org/10.1016/S0006-291X(02)00571-5
  4. Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J. and Staskawicz, B. J. 1994. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860 https://doi.org/10.1126/science.8091210
  5. Bilang, R. and Bogorad, L. 1996. Light-dependent developmental control of rbcS gene expression in epidermal cells of maize leaves. Plant Mol. Biol. 31 :831-841 https://doi.org/10.1007/BF00019470
  6. Century, K. S., Shapiro, A. D., Repetti, P. P., Dahlbeck, D., Holub, E. and Staskawicz, B. J. 1997. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965 https://doi.org/10.1126/science.278.5345.1963
  7. Clough, S. J. and Bent, A. F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  8. Coppinger, P., Repetti, P. P., Day, B., Dahlbeck, D., Mehlert, A. and Staskwicz, B. J. 2004. Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial resistance in Arabidopsis thaliana. Plant J. 40:225-237 https://doi.org/10.1111/j.1365-313X.2004.02203.x
  9. Delaney, T, Friedrich, L., Kessmann, H., Uknes, S., Vemooij, B., Ward, E., Weymann, K. and Ryals, J. 1994. The molecular biology of systemic acquired resistance. In Advances in Molecular Genetics of Plant-Microbe Interactions, volume 3 (Daniels, M.ed.). Dordrecht: Ktuwer Academic Publishers, pp.339-347
  10. Dilbirligi, M., Erayrnan, M., Sandhu, D., Sidhu, D. and Gill, K. S. 2004. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461-481 https://doi.org/10.1534/genetics.166.1.461
  11. Dubrovsky, J. G., Doerner, P., Colen-Carmona, A. and Rost, T. L. 2000. Pericycle cell proliferation and lateral root initiation in Arabidopsis thaliana. Plant Physiol. 124: 1648-1657 https://doi.org/10.1104/pp.124.4.1648
  12. Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199-206 https://doi.org/10.1016/S1360-1385(00)01600-9
  13. Friedrich, L., Kawton, K., Ruess, W., Masner, P., Specker, N., Rella, G. M., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivative induces systemic acquired resistence in tobacco. Plant J. 10:61-70 https://doi.org/10.1046/j.1365-313X.1996.10010061.x
  14. Grant, M. R., Godiard, L., Straube, E., Ashfield, T, Lewald, J., Sattler, A., Innes, R. W. and Dangle, J. L. 1995. Structure of the Arabidopsos RPM1 gene enabling dual specificity disease resistance. Science 269:843-846 https://doi.org/10.1126/science.7638602
  15. Hemerly, A. S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G. and lnze, D. 1993. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711-1723 https://doi.org/10.1105/tpc.5.12.1711
  16. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-82 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  17. Hoekema, A., Hirsch, P. R., Hooykaas, P. J.J. and Schilperoort, Z. A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179-180 https://doi.org/10.1038/303179a0
  18. Innes, R. W., Bent, A. F., Kunkel, B. N., Bisgrove, S. R. and Staskawicz, B. J. 1993. Molecular analysis of avirulence gene avrRpt2 and indentification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175:4859-4869 https://doi.org/10.1128/jb.175.15.4859-4869.1993
  19. Jwa, N. S., Agrawal, G K., Rakwal, R., Park, C. H. and Agrawal, V. P. 2001. Molecular cloning and characterization of novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem. Biophys. Res. Commun. 286:973-983 https://doi.org/10.1006/bbrc.2001.5507
  20. Kiyosawa, S. 1982. Genetic and epidemiological modeling of breakdown of plant disease resistence. Annu. Rev. Phytopathol. 20:93-117 https://doi.org/10.1146/annurev.py.20.090182.000521
  21. Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567-580 https://doi.org/10.1006/jmbi.2000.4315
  22. Kuc, J. 1982. Induced immunity to plant disease. BioScience 32:854-860 https://doi.org/10.2307/1309008
  23. Kyte.J. and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  24. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J. and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16:223-233 https://doi.org/10.1046/j.1365-313x.1998.00288.x
  25. Malamy. J. E. and Benfey, P. N. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33-44
  26. Metraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W. and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004-1006 https://doi.org/10.1126/science.250.4983.1004
  27. Mindrinos, M., Katagiri, F., Yu, G. L. and Ausubel, F. M. 1994. The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78: 1089-1099 https://doi.org/10.1016/0092-8674(94)90282-8
  28. Puri, N., Jenner, C., Bennett, M., Stewart, R., Mansfield, J., Lyons, N. and Taylor, J. 1997. Expression of avrPphB, an avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the hypersensitive reaction in bean. Mol. Plant Microbe Interact. 10:247-256 https://doi.org/10.1094/MPMI.1997.10.2.247
  29. Ritter, C. and Dangl, J. L. 1995. The avrRPm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabodopsis. Mol. Plant Microbe Interact. 8:444-453 https://doi.org/10.1094/MPMI-8-0444
  30. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358 https://doi.org/10.1016/0042-6822(61)90319-1
  31. Rushton, P. J. and Somssich, I. E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315 https://doi.org/10.1016/1369-5266(88)80052-9
  32. Simonich, M. T. and Innes, R. W. 1995. A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. Phaseolicola. Mol. Plant Microbe Interact. 8:637-640 https://doi.org/10.1094/MPMI-8-0637
  33. Sonnhammer, E. L. L., von Heijne, G and Krogh, A 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen, eds (Menlo Park, CA: American Association for Artificial Intelligence Press), pp. 175-182
  34. Warren, R. F., Henk, A., Mowery, P., Holub, E. and Innes, R. W. 1998. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439-1452 https://doi.org/10.1105/tpc.10.9.1439
  35. Whalen, M. C., Innes, R. W., Bent, A. F. and Staskawicz, B. J. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49-59 https://doi.org/10.1105/tpc.3.1.49
  36. Yu, D., Chen, C. and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527-1540 https://doi.org/10.1105/tpc.13.7.1527

Cited by

  1. A novel light-dependent selection marker system in plants vol.9, pp.3, 2011, https://doi.org/10.1111/j.1467-7652.2010.00557.x
  2. RAV genes: regulation of floral induction and beyond vol.114, pp.7, 2014, https://doi.org/10.1093/aob/mcu069
  3. CASAR82A, a Pathogen-induced Pepper SAR8.2, Exhibits an Antifungal Activity and its Overexpression Enhances Disease Resistance and Stress Tolerance vol.61, pp.1-2, 2006, https://doi.org/10.1007/s11103-005-6102-6
  4. An IbEF1 from sweet potato promotes flowering in transgenic tobacco vol.33, pp.4, 2011, https://doi.org/10.1007/s13258-011-0040-2
  5. Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses vol.172, pp.2, 2007, https://doi.org/10.1016/j.plantsci.2006.08.015
  6. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses vol.224, pp.5, 2006, https://doi.org/10.1007/s00425-006-0302-4
  7. Identification and deletion analysis of the promoter of the pepper SAR8.2 gene activated by bacterial infection and abiotic stresses vol.224, pp.2, 2006, https://doi.org/10.1007/s00425-005-0210-z
  8. Regulation and function of the pepper pectin methylesterase inhibitor (CaPMEI1) gene promoter in defense and ethylene and methyl jasmonate signaling in plants vol.230, pp.6, 2009, https://doi.org/10.1007/s00425-009-1021-4
  9. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance vol.61, pp.6, 2006, https://doi.org/10.1007/s11103-006-0057-0
  10. Alteration of floral organ identity by over-expression of IbMADS3-1 in tobacco vol.20, pp.2, 2011, https://doi.org/10.1007/s11248-010-9420-7
  11. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces vol.77, pp.6, 2011, https://doi.org/10.1007/s11103-011-9839-0
  12. Ectopic expression of ibPDS gene enhanced tolerance to oxidative stress in transgenic tobacco plants vol.77, pp.2, 2015, https://doi.org/10.1007/s10725-015-0041-2
  13. Ectopic expression of NtEF1 and NtEF2 promotes flowering and alters floral organ identity in Nicotiana tabacum vol.9, pp.1, 2015, https://doi.org/10.1007/s11816-014-0336-1
  14. Cloning and characterization of the new multiple stress responsible gene I (MuSI) from sweet potato vol.32, pp.6, 2010, https://doi.org/10.1007/s13258-010-0093-7
  15. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses vol.227, pp.2, 2007, https://doi.org/10.1007/s00425-007-0628-6
  16. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility vol.228, pp.3, 2008, https://doi.org/10.1007/s00425-008-0752-y
  17. Characterization and expression pattern of IbPRP1 and IbPRP2 stress-related genes from sweetpotato vol.32, pp.5, 2010, https://doi.org/10.1007/s13258-010-0072-z