DOI QR코드

DOI QR Code

Initial structure of intuitionistic fuzzy proximity

  • Lee, Seok Jong (RIMF, Department of Mathematics, Chungbuk National University) ;
  • Lee, Eun Pyo (Department of Mathematics, Seonam University)
  • Published : 2005.02.01

Abstract

In this paper, we show that the category of intuitionistic fuzzy proximity spaces has an initial structure, and consequently a subspace structure and a product space structure of them.

Keywords

References

  1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96 https://doi.org/10.1016/S0165-0114(86)80034-3
  2. D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89 https://doi.org/10.1016/S0165-0114(96)00076-0
  3. D. Coker and A. Haydar Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3 (1995), 899-909
  4. H. Gurcay, D. Coker and A. Haydar Es, On fuzzy continuity In intuition is tic fuzzy topological spaces, J. Fuzzy Math. 5 (1997), 365-378
  5. A. K. Katsaras, Fuzzy proximity spaces, J. Math. Anal. Appl. 68 (1979), no. 1, 100-110 https://doi.org/10.1016/0022-247X(79)90102-1
  6. A. K. Katsaras, On fuzzy proximity spaces, J Math. Anal. Appl. 75 (1980), no. 2, 571-583 https://doi.org/10.1016/0022-247X(80)90102-X
  7. Mona Khare, A relationship between classical and fuzzy proximities, Fuzzy Sets and Systems 90 (1997), no. 1, 55-59 https://doi.org/10.1016/S0165-0114(96)00107-8
  8. Seok Jong Lee and Eun Pyo Lee, lntuitionistic fuzzy proximity spaces, Int. J. Math. Math. Sci. 2004 (2004), no. 49, 2617-2628 https://doi.org/10.1155/S0161171204310033
  9. Wang Jin Liu, Fuzzy proximity spaces redefined, Fuzzy Sets and Systems 15 (1985), no.3, 241-248 https://doi.org/10.1016/0165-0114(85)90017-X
  10. Ying-Ming Liu and Mao-Kang Luo, Fuzzy topology, Advances in Fuzzy Systems Applications and Theory, Vol. 9, World Scientific Publishing Co. Inc., River Edge, NJ, 1997