Tribo-Nanolithography를 이용한 액중 나노가공기술 개발

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography

  • 발행 : 2005.02.01

초록

Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate easily by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin damaged layer rapidly forms in the substrate at the diamond tip-sample junction along scanning path of the tip and simultaneously the area uncovered with the damaged layer is being etched. This study demonstrates how the TNL parameters can affect the formation of damaged layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.

키워드

참고문헌

  1. Schuster, R. and Kirchner, V., 'Electrochemical Micro machining,' Science, Vol. 289, pp. 98-101, 2000 https://doi.org/10.1126/science.289.5476.98
  2. Park, J. W., Lee, E. S. and Moon, Y H., 'A Study on the Electrochemical Micro-machining for fabrication of Micro Grooves,' J. of the KSPE, Vol. 19, No.4, pp. 101-108, 2002
  3. Ashida, K., Morita, N. and Yoshida, Y., 'Study on Nano-Machining Process Using Mechanism of a Friction Force Microscope,' JSME Int. J., Vol. 44, No. 1, pp. 244-253, 2001 https://doi.org/10.1299/jsmec.44.244
  4. Piner, R. D., Zhu, J., Xu, E., Hong, S. and Mirkin, C. A., 'Dip-pen Nanolithography,' Science, Vol. 283, pp. 661-663, 1999 https://doi.org/10.1126/science.283.5402.661
  5. Kolb, D. M., Ullmann, R. and Will, T., 'Nanofabrication of Small Copper Clusters on Gold ( 111 ) Electrodes by a Scanning Tunneling Microscope,' Science, Vol. 275, pp. 1097-1099,1997 https://doi.org/10.1126/science.275.5303.1097
  6. Dagata, J. A., 'Device Fabrication by Scanned Probe Oxidation,' Science, Vol. 270, pp. 1625-1626, 1995 https://doi.org/10.1126/science.270.5242.1625
  7. Wilder, K. and Quate, C. E, 'Noncontact Nanolithography Using Atomic Force Microscope,' Appl. Phys. Lett., Vol. 73, No. 17, pp. 2527-2529, 1998 https://doi.org/10.1063/1.122504
  8. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T. and Smalley, R. E., 'Nanotubes as Nanoprobes in Scanning Probe Microscopy,' Nature, Vol. 384, pp. 147-150,1996 https://doi.org/10.1038/384147a0
  9. Snow, E. S. and Campbell, P. M., 'AFM fabrication of Sub-10-Nanometer Metal-Oxide Devices with inSitu Control of Electrical Properties,' Science, Vol. 270, pp. 1639-1641, 1995 https://doi.org/10.1126/science.270.5242.1639
  10. Snow, E. S., Jernigan, G. G. and Campbell, P. M., 'The Kinetics and Mechanism of Scanned Probe Oxidation of Si,' Appl. Phys. Lett. Vol. 76, No. 13, pp.1782-1784,2000 https://doi.org/10.1063/1.126166
  11. Davis, Z. J., Abadal, G., Hansen, O., Borise, X., Barniol, N., Perez-Murano, E. and Boisen, A., 'AFM Lithography of Aluminum for Fabrication of Nanomechanical Systems,' Ultramicroscopy, Vol. 97, pp. 467-472,2003 https://doi.org/10.1016/S0304-3991(03)00075-5
  12. Abadal, G., Perez-Murano, E., Barniol, N. and Aymerich, X., 'Field Induced Oxidation of Silicon by SPM: Study of the Mechanism at Negative Sample Voltage by STM, ESTM and AFM,' Appl. Phys. A, Vol. 66, pp. S791-S795, 1998 https://doi.org/10.1007/s003390051244
  13. Chien, E S.-S., Chang, J.-W., Lin, S.W Chou, Y-C., Chen, T. T., Gwo, S., Chao, T.-S. and Hsieh, W.-E, 'Nanometer-Scale Conversion of $Si_3N_4$ to $SiO_x$,' Appl. Phys. Lett., Vol. 76, No.3, pp. 360-362, 2000 https://doi.org/10.1063/1.125754
  14. Klauser, R., Hong, I.-H., Su, H.-J., Chen, T. T., Gwo, S., Wang, S.-C., Chuang, T. J. and Gritsenko, V. A., 'Oxidation States in Scanning-Probe-Induced $Si_3N_4$ to $SiO_x$ Conversion Studied by Scanning Photoemission Microscopy,' Appl. Phys. Lett., Vol. 79, No. 19, pp. 3143-3145, 2001 https://doi.org/10.1063/1.1415415
  15. Steckl, A. J., Mogul, H. C. and Morgen, S., 'Localized Fabrication of Silicon Nanostructures by Focused Ion Beam,' Appl. Phys. Lett., Vol. 60, No. 15, pp. 1833-1835, 1992 https://doi.org/10.1063/1.107179
  16. Yavas, O., Ochiai, C, Takai, M., Hosono, A. and Okuda, S., 'Maskless Fabrication of Field-Emitter Array by Focused Ion and Electron Beam,' Appl. Phys. Lett., Vol. 76, No. 22, pp. 3319-3321,2000 https://doi.org/10.1063/1.126638
  17. Kan, J. A., Bettiol, A. A. and Watt, F., 'Three-Dimensional Nanolithography using Proton Beam Writing,' Appl. Phys. Lett., Vol. 83, No.8, pp. 16291631,2003 https://doi.org/10.1063/1.1604468
  18. Austin, M. D. and Chou, S. Y., 'Fabrication of 5 nm Linewidth and 14 om Pitch Features by Nanoimprint Lithography,' Appl. Phys. Lett., Vol. 84, No. 26, pp. 5299-5301,2003 https://doi.org/10.1063/1.1766071
  19. Park, J. W., Kawasegi, N., Morita, N. and Lee, D. W., 'Tribo-Nanolithography of Silicon in Aqueous Solutionbased on Atomic Force Microscope,' Appl. Phys. Lett., Vol. 85, No.10, pp. 1766-1768,2004 https://doi.org/10.1063/1.1773620