Improved Scatter Correction for SPECT Images : A Monte Carlo Simulation Study

SPECT 영상 산란보정 개선: 몬테칼로 시뮬레이션 연구

  • Bong, Jung-Kyun (Division of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Kim, Hee-Joung (Division of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Son, Hye-Kyung (Department of Radiology, Yonsei University College of Medicine, Research Institute of Radiological Science, Yonsei University) ;
  • Lee, Jong-Doo (Division of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Jung, Hae-Jo (Department of Radiology, Yonsei University College of Medicine, Research Institute of Radiological Science, Yonsei University)
  • 봉정균 (연세대학교 핵의학과) ;
  • 김희중 (연세대학교 핵의학과) ;
  • 손혜경 (연세대학교 진단방사선과 방사선의과학 연구소) ;
  • 이종두 (연세대학교 핵의학과) ;
  • 정해조 (연세대학교 진단방사선과 방사선의과학 연구소)
  • Published : 2005.06.30

Abstract

Purpose: Abutted scatter energy windows used for a triple energy window (TEW) method may provide wrong estimation of scatter. This study is to propose an extended TEW (ETEW) method, which doesn't require abutted scatter energy windows and overcomes the shortcomings of TEW method. Materials & Methods: The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection windows, which can overestimate or underestimate scatter. The ETEW is compared to the TEW using Monte Carlo simulated data for point sources as well as hot and cold spheres in a cylindrical water phantom. Various main energy window widths (10 %, 15 % and 20 %) were simulated. Both TEW and ETEW improved image contrast, % recovery coefficients and normalized standard deviation. Results: Both of TEW and ETEW improved image contrast and % recovery coefficients. Estimated scatter components by the TEW were not proportional to the true scatter components over the main energy windows when ones of 10 %, 15 %, and 20 % were simulated. The ETEW linearly estimated scatter components over the width of the main energy windows. Conclusion: We extended the TEW method into the method which could linearly estimate scatter components over the main energy windows.

목적: 삼중에너지창 산란보정 방법(triple energy window method, TEW)을 위해 사용하는 인접된 산란에너지창은 산란을 부적당하게 평가할 수 있다. 본 연구의 목적은 인접된 산란에너치창을 사용하지 않고, TEW의 단점을 보완하는 개선된 삼중에너지창 방법(extended triple energy window method, ETEW)으로 확장하는 것이다. 대상 및 방법: TEW에서 사용하는 인접된 산란에너지창은 주에너지창의 설정에 따라 산란성분을 과소평가하거나 과대평가할 수 있다. 이에 비해 ETEW는 주에너지창에 인접되지 않는 산란에너지창을 사용하여 TEW를 광범위하게 사용할 수 있도록 확장한 방법이다. 본 연구에서는 cold sphere들 또는 hot sphere들을 가진 원통형 물팬텀과 점선원들에 대한 몬테칼로 시뮬레이션을 실행하여 ETEW와 TEW를 비교 평가하였다. 또한 다양한 주에너지창 너비들(10%, 15%, 그리고 20%)을 이용하여 시뮬레이션을 실행하였다. 데이터 분석을 위해서 영상대조도, %회복계수, 정규화된 표준편차를 계산하였다. 결과: TEW와 ETEW 모두 산란보정전보다 영상대조도와 %회복계수를 개선시켰다. 그러나, TEW에 의해 추정된 산란성분들은 10%, 15%, 그리고 20%의 주에너지창 너비들에 대해 시뮬레이션이 된 산란성분들의 참값에 비례하지 않았으나, ETEW는 참값에 직접으로 비례하는 산란성분들을 추정하였다. 결론: 본 연구는 기존의 TEW 산란보정 방법이 가지고 있던 단점을 보완하여 ETEW 방법으로 확장하였다.

Keywords

References

  1. Ljungberg M, Msaki P, Strand S-E. Comparison of dual-window and convolution scatter correction techniques using the Monte Carlo method. Phys Med Biol 1990;8:1099-110
  2. Floyd CE, Jaszack RJ, Greer KL, Coleman RE. Deconvolution of Compton scatter in SPECT. J Nucl Med 1985;26:403-8
  3. Msaki B, Axelsson B, Larsson SA. Some physical factors influencing the accuracy of convolution scatter correction in SPECT. Phys Med Biol 1988;34:283-298 https://doi.org/10.1088/0031-9155/34/3/002
  4. Ljungberg M, King MA, Hademenos GJ, Strand S-E Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 1994;35:143-51
  5. Jaszack RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893-900
  6. King MA, Hademenos GJ, Glick S JA Dual photopeak window method for scatter correction. J Nucl Med 1993;33:605-13
  7. Koral KF, Swailem FM, Buchibinder S, Clinthorne NH, Rogers WL, Tsui BMW. SPECT dual-energy-window compton correction: Scatter multiplier required for quantification. J Nucl Med 1990;31: 90-8
  8. Ogawa K, Harata H, Ichihara T, Kubo A, Hashimoto SA Practical method for position dependent compton-scatter correction in single photon emission CT. IEEE Trans Med Imag 1991;10:408-12 https://doi.org/10.1109/42.97591
  9. Axelsson B, Msaki P, Israelson A. Subtraction of Comptonscattered photons in single-photon emission computerized tomography. J Nucl Med 1984;25:290-4
  10. Pretorius PH, Van Rensburg AJ, Van Aswegen A, Ltter MG, Serfontein DE, Herbst CP. The channel ratio method of scatter correction for radionuclide image quantitation. J Nucl Med 1993; 34:330-5
  11. Zimmerman RE, Williams BB, Chan KH, Moore SC, Kijewski MF. Limitations of dual-photopeak window scatter correction for brain imaging. J Nucl Med 1997;38:1902-6
  12. Hademenos GJ, King MA, Ljungberg M. Influence of phantom size, shape, and density, and collimator selection on the dual photopeak window scatter correction method. IEEE Trans Nucl Sci 1994;41:364-8 https://doi.org/10.1109/23.281525
  13. De Vries DJ, King MA. Window selection for dual photopeak window scatter correction in Tc-99m Imaging. IEEE Trans Nucl Sci 1994;41:2771-8 https://doi.org/10.1109/23.340646
  14. Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative Assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36:1476-88
  15. Hademenos GJ, Ljungberg M, King MA, Glick SJ. A Monte Carlo investigation of the dual photopeak window scatter correction method. IEEE Trans Nucl Sci 1993;40:179-85 https://doi.org/10.1109/23.212338
  16. Luo J-Q, Koral KF, Ljungberg M, Floyd CE, Jaszczak RJ. A Monte Carlo investigation of dual-energy window scatter correction for volume-of-interest quantification in $^{99}TC^m$ SPECT. Phys Med Biol 1995;40:181-199. https://doi.org/10.1088/0031-9155/40/1/015
  17. Pollard KR, Lewellen TK, Kaplan MS, Haynor DR, Miraoka RS, Eary JF, et al. Energy-based scatter corrections for scintillation camera images of Iodine-131. J Nucl Med 1996;37:2030-7
  18. Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34: 2216-21
  19. Dewaraja Y, Li J, Koral K. Quantitative $^{131}I$ SPECT with triple energy window Compton scatter correction. IEEE Trans Nucl Sci 1998;6:3109-14.
  20. King MA, De Vries DJ, Pan T-S, Pretorius PH, Case JA. An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstruction. IEEE Trans Nucl Sci 1997;44:1140-5 https://doi.org/10.1109/23.596978
  21. Ljungberg M, Strand S-E A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Meth Prog Biomed 1989;29:257-72 https://doi.org/10.1016/0169-2607(89)90111-9
  22. De Vries DJ, Moore SC, Zimmerman RE, Mueller SP, Friedland B, Lanza RC. Development and validation of a Monte Carlo simulation of photon transport in an Anger camera. IEEE Trans Med Imag 1990;9:430-8 https://doi.org/10.1109/42.61758
  23. Yigal SJ, Farncombe TH, Pretorius PH, Gifford HC, Narayanan MV, Frey EC, et al. Comparison of scatter compensating strategies for myocardial perfusion imaging using Tc-99m labeled sestamibi. IEEE Trans Nucl Sci 2002;49:2309-14 https://doi.org/10.1109/TNS.2002.803859
  24. Narayanan MV, Pretorius PH, Dahlberg ST, Leppo JA, Botkin N, Krasnow J, et al. Evaluation of scatter compensation strategies and their impact on human detection performance Tc-99m myocardial perfusion imaging. IEEE Trans Nucl Sci 2003;50:1522-27 https://doi.org/10.1109/TNS.2003.817399
  25. Ogasawara K, Hashimoto J, Ogawa K, Kubo A, Motomura N, Hasegawa H, et al. Simultaneous acquisition of iodine-123 emission and technetium-99m transmission data for quantitative brain single-photon emission tomographic imaging. Eur J Nucl Med 1998;25:1537-44 https://doi.org/10.1007/s002590050333