Measurement of Thickness Distribution of $Si_3N_4$ Membrane Using Phase-Shifting Interferometer

위상이동 간섭계를 이용한 $Si_3N_4$ 박막의 두께 분포 측정

  • Lee, Jung-Hyun (Department of Physics, Pohang University of Science and Technology) ;
  • Jeong, Seung-Jun (Department of Physics, Pohang University of Science and Technology) ;
  • Kang, Jeon-Woong (Department of Physics, Pohang University of Science and Technology) ;
  • Jeon, Yun-Seong (Department of Physics, Pohang University of Science and Technology) ;
  • Hong, Chung-Ki (Department of Physics, Pohang University of Science and Technology)
  • 이정현 (포항공과대학교 물리학과) ;
  • 정승준 (포항공과대학교 물리학과) ;
  • 강전웅 (포항공과대학교 물리학과) ;
  • 전윤성 (포항공과대학교 물리학과) ;
  • 홍정기 (포항공과대학교 물리학과)
  • Published : 2005.04.30

Abstract

The thickness of a Si3N4 thin film with a 100m nominal thickness was measured by use of a Mach-Zehnder interferometer. The map of the phase-delay through the thin film was obtained by an interframe intensity-correlation-matrix method that could elliminate phase-shifting errors. After the spatial phase-shifting errors were treated with a least-squares method, the reference to surface of the phase map was estimated. The overall accuracy of the method was found to be 5nm.

레이저 간섭계를 이용하여 수백 나노미터 정도의 박막 두께를 측정하였다. 마흐-젠더 간섭계로 실험장치를 구성하고 위상이동법을 통해 박막을 투과할 때 생기는 위상지연을 측정하였다. 광휘 상관 모델을 적용하여 위상 이동법의 단점인 위상이동 오차가 보정된 위상도를 측정하였다. 기존에는 고려되지 않았던 공간적 위상 이동오차를 보정하기 위하여 최소자승법을 이용하여 위상 기준면을 추정하였다. 이 방법으로 미세한 위상지연을 측정해야 하는 100nm $Si_3N_4$ 박막시료의 두께를 5nm의 정밀도로 측정할 수 있었다.

Keywords

References

  1. Metrologia v.2 Installation et utillisation du compateur photoelectrique et interferential du Bureau International des Poids et mesures Carre, P. https://doi.org/10.1088/0026-1394/2/1/005
  2. Applied Optics v.13 Digital wavefront measuring interferometry for testing optical surfaces and lenses Buruning, J.;Herriott, D.R.;Gallagher, J.E.;Rosenfeld, D.P.;White, D.A.;Brangaccio, D.J. https://doi.org/10.1364/AO.13.002693
  3. Journal of the Optical Society of America v.7 Fourier decription of digital phase mesurment phase-measuring interferometry Freischlad, K.;Koliopoulos, C.L. https://doi.org/10.1364/JOSAA.7.000542
  4. Applied Optics v.24 Phase shifting speckle interferometry Greath, K. https://doi.org/10.1364/AO.24.003053
  5. Optics Letters v.22 Phase shifting digital holography Yamaguchi, I.;Zhang, T. https://doi.org/10.1364/OL.22.001268
  6. Optics Letters v.23 Three-dimensional microscopy with phse shifting digital holography Zhang, T.;Yamaguchi, I. https://doi.org/10.1364/OL.23.001221
  7. Applied Optics v.22 digital wave front measuring interferometry: some systematic error sources Schwider, J.;Burow, R.;Elssner, K.E.;Grnznna, J.;Spolaczyk, R.;Merkel, K. https://doi.org/10.1364/AO.22.003421
  8. Optics Communications v.84 Simultaneous calculation of phase distribution and scanning phase in phase shifting interferometry Okada, K.;Sato, A.;Tsujiuchi, J. https://doi.org/10.1016/0030-4018(91)90212-V
  9. Optical Engineering v.34 General algorithm of phase shifting interferometry by iterative least square fitting Kong, I.B.;Kim, S.W. https://doi.org/10.1117/12.184088
  10. Optical Engineering v.36 Accelerated phase measuring interferometry by least square for phase shifting interferometry Kim, S.W.;Kang, M.G.;Han, G.S. https://doi.org/10.1117/1.601546
  11. Applied Optics Inter frame intensity correlation matrix method for self-calibration in phase shifting interferometry Yun, H.Y.;Hong, C.K.