Effects of HIF-1α/VP16 Hybrid Transcription Factor on Estrogen Receptor in MCF-7 Human Breast Cancer Cells

  • Cho, Jung-Yoon (College of Life Science, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University) ;
  • Park, Mi-Kyung (College of Life Science, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University) ;
  • Lee, Young-Joo (College of Life Science, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University)
  • Published : 2005.12.01

Abstract

The estrogen receptor (ER) is activated and degraded by estrogen. We have examined ER downregulation and activation under hypoxia mimetic conditions. Cobalt chloride induced ER downregulation at 24 h of treatment. This degradation involved hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) as examined by using a constitutively active form of HIF-1$\alpha$, HIF-1$\alpha$/VP16, constructed by replacing the transactivation domain of HIF-1$\alpha$ with that of VP16. Western blot analysis revealed that E2-induced ER downregulation was observed within ${\~}6h$, whereas HIF-1$\alpha$/VP16-induced ER degradation was observed within 12${\~}$20h. HIF-1$\alpha$/VP16 activated the transcription of estrogen-responsive reporter gene in the absence of estrogen. These results suggest that ER downregulation and activation under hypoxia maybe mediated in part by a HIP-1$\alpha$ expression.

Keywords

References

  1. Alarid, E. T., Bakopoulos, N. and Solodin, N. (1999). Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Mol. Endocrinol., 13, 1522-1534 https://doi.org/10.1210/me.13.9.1522
  2. Alarid, E. T., Preisler-Mashek, M. T. and Solodin, N. M. (2003). Thyroid hormone is an inhibitor of estrogen-induced degradation of estrogen receptor-alpha protein: estrogen-dependent proteolysis is not essential for receptor transactivation function in the pituitary. Endoerinol. 144, 3469-347 https://doi.org/10.1210/en.2002-0092
  3. Beato, M. and Klug, J. (2000). Steroid hormone receptors: an update. Hum. Reprod. Update. 6, 225-236 https://doi.org/10.1093/humupd/6.3.225
  4. Belanger, A. J., Lu, H., Date, T., Liu, L. X., Vincent, K. A., Akita, G Y., Cheng, S. H., Gregory, R. J., and Jiang, C. Hypoxia up-regulates expression of peroxisome proliferator-activated receptor gamma angiopoietin-related gene (PGAR) in cardiomyocytes: role of hypoxia inducible factor lalpha. J. Mol. Cell Cardiol., 34, 765-774 (2002) https://doi.org/10.1006/jmcc.2002.2021
  5. Brahimi-Hom, C., Berra, E. and Pouyssegur, J. (2001). Hypoxia: the tumor's gateway to progression along the angiogenic pathway. Trends Cell Biol. 11, S32-36 https://doi.org/10.1016/S0962-8924(01)82185-1
  6. Cassoni, P., Catalano, M. G, Sapino, A., Marrocco, T., Fazzari, A., Bussolati, G and Fortunati, N. Oxytocin modulates estrogen receptor alpha expression and function in MCF7 human breast cancer cells. Int. J. Oncol. 21, 375-378 (2002)
  7. Catherino, W. H., Wolf, D. M., and Jordan, V. C. (1995). A naturally occurring estrogen receptor mutation results in increased estrogenicity of a tamoxifen analog. Mol. Endocrinol., 9 1053-1063 https://doi.org/10.1210/me.9.8.1053
  8. Cicatiello, L. Addeo, R. Altucci, L. Belsito, V. Petrizzi, V. Boccia, M. Cancemi, D. Germano, C. Pacilio, S. Salzano, F. Bresciani, A. Weisz, L. Cicatiello, R. Addeo, L. Altucci, Belsito, Petrizzi, V. Boccia, V. Cancemi, M., Germano, D., Pacilio, C; Salzano, S., Bresciani, F, and Weisz, A. (2000). The antiestrogen ICI 182,780 inhibits proliferation of human breast cancer cells by interfering with multiple, sequential estrogenregulated processes required for cell cycle completion. Mol. Cell Endoerinol. 165, 199-209 https://doi.org/10.1016/S0303-7207(00)00243-4
  9. Khissiin, A., EI and Leclercq, G (1999). Implication of protea- some in estrogen receptor degradation. FEBS Lett. 448, 160-166 https://doi.org/10.1016/S0014-5793(99)00343-9
  10. Fan, M., Bigsby, R. M., and Nephew, K. P. (2003). The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. Mol. Endocrinol. 17,356-365 https://doi.org/10.1210/me.2002-0323
  11. Gehm, B. D., McAndrews, J. M., Chien, P. Y., and Jameson, J., Resveratrol, L. (1997). A polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci. USA 94,14138-14143
  12. Hur, E., Chang, K. Y., Lee, E., Lee, S. K. and Park, H. (2001). Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-lalpha. Mol. Pharmacal. 59, 1216-1224 https://doi.org/10.1124/mol.59.5.1216
  13. Mazure, N. M., Chauvet, C., Bois-Joyeux, B., Bernard, M. A., Nacer-Cherif, H. and Danan, J. L. (2002). Repression of alphafetoprotein gene expression under hypoxic conditions in human hepatoma cells: characterization of a negative hypoxia response element that mediates opposite effects of hypoxia inducible factor-1 and c-Myc. Cancer Res. 62, 1158-1165
  14. McDonnell, D. P. and Norris, J. D. (2002). Connections and regulation of the human estrogen receptor. Science 296, 1642-1644
  15. Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L. and O'Malley, B. W. (1999). Proteasorne-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA 96, 18581862
  16. Nawaz, Z. and O'Malley, B. W. (2004). Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription Mol. Endocrinol. 18, 493-499
  17. Reid, G., Denger, S., Kos, M. and Gannon, F. (2002) Human estrogen receptor-alpha: regulation by synthesis, modification and degradation. Cell Mol. Life Sci. 59, 821-831 https://doi.org/10.1007/s00018-002-8470-2
  18. Shao, W. and Brown, M. (2004). Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res. 6, 39-52 https://doi.org/10.1186/bcr742
  19. Semenza, G. L., Agani, F. Iyer, N. Jiang, B. H., Leung, S., Wiener, C. and Yu, A. (1998). Hypoxia-inducible factor 1: from molecular biology to cardiopulmonary physiology; Chest 114, 40S-45S https://doi.org/10.1378/chest.114.1.40
  20. Stoner, M., Saville, B., Wormke, M., Dean, D., Burghardt, R., and Safe, S. (2002). Hypoxia induces proteasome-dependent degradation of estrogen receptor alpha in ZR-75 breast cancer cells. Mol. Endocrinol. 16,2231-2242 https://doi.org/10.1210/me.2001-0347
  21. Vincent, K. A., Shyu, K. G, Luo, Y, Magner, M., Tio, R. A., Jiang, C; Goldberg, M. A., Akita, G. Y, Gregory, R. J, and Isner, J. M. (2000). Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-Ialpha/ VP16 hybrid transcription factor. Circulation 102, 2255-2261 https://doi.org/10.1161/01.CIR.102.18.2255
  22. Wormke, M., Stoner, M., Saville, B., Walker, K., Abdelrahim, M., Burghardt, R. and Safe, S. (2003). The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes. Mol. Cell Bioi. 23, 1843-1855 https://doi.org/10.1128/MCB.23.6.1843-1855.2003
  23. Yan, S. F., Zou, Y S., Gao, Y, Zhai, c, Mackman, N., Lee, S. L., Milbrandt, J, Pinsky, D., Kisiel, W. and Stem, D. (1998). Tissue factor transcription driven by Egr-1 is a critical mechanism of murine pulmonary fibrin deposition in hypoxia. Proc. Natl. Acad. Sci. USA 95, 8298-8303